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Abstract

Space interferometry is the inevitable endpoint of high angular resolution astrophysics,
and a key technology that can be leveraged to analyse exoplanet formation and
atmospheres with exceptional detail. However, cost blowouts of large missions such
as Darwin and TPF-I, and inadequate technology readiness levels have resulted in
limited developments since the late 2000s. Here, we present a feasibility study into a
small scale interferometric array, flying in Low Earth Orbit, that will aim to prove the
technological concepts involved with space interferometry while still conducting exciting
science. Through the development of equations that capture satellite motion due to
the J2 oblateness of the Earth, we simulate the satellite array to determine whether an
ambitiously simple design of one thruster per satellite is enough to maintain a stable
interferometer. We find that this design is indeed enough; around 10% of the ∆v

budget per orbit is used to correct for this perturbation. We also conduct observability
simulations to identify what parts of the sky are visible for a given orbital configuration.
We find that the main limiting factor is the antisolar angle, the maximum angle between
the target star and the point opposite the sun. In engineering the design of this array, this
angle must be pushed to be as large as possible in order to obtain maximum coverage of
the sky. We conclude with optimism that this design is achievable, but a more detailed
control simulation factoring in a metrology system is the next step to demonstrate full
mission feasibility.
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Nomenclature

Acronyms

Symbol Description SI Units

AITC Advanced Instrumentation and Technology
Centre

ASP Astrophysical Space-interferometry Pathfinder

ECI Earth-centred inertial (frame)

ELT Extremely Large Telescope

ESA European Space Agency

HCW Hill-Clohessy-Wiltshire (equations)

JWST James Webb Space Telescope

LEO Low Earth Orbit

LIFE Large Interferometer For Exoplanets

LVLH Local vertical, local horizontal (frame)

NASA National Aeronautics and Space
Administration

PFI Planet Formation Imager

SAMSI Spacecraft Array for Michelson Spatial
Interferometry

TPF Terrestrial Planet Finder

VLTI Very Large Telescope Interferometer

Roman symbols

Symbol Description SI Units

a Acceleration vector m s−2

A Amplitude –

A Area m2

∆b Baseline separation vector (2×∆r) m

C Drag coefficient –
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viii Nomenclature

D Optical path difference m

d Optical path length m

E Electric field –

F Force vector N

F Flux W m−2

G Envelope modulation function –

g Standard gravitational acceleration m s−2

H Scale height m

h Orbital angular momentum kg m2 s−1

I Intensity W s−1 m−2

i Inclination Rad

Isp Specific impulse s

J2 Earth’s oblateness perturbation amplitude –

Jn, C
n
m, S

n
m Dimensionless geopotential coefficients –

k Wavenumber m−1

M Change of basis matrix –

m Mass kg

Pnm Legendre polynomial –

Q Quaternion rotation function –

q Quaternion –

∆r Spacecraft separation vector m

r Position vector m

R Radius m

r Radial position m

r0 Fried parameter m

T Period s

t Time s

U Potential J

∆v Delta v m s−1

v Velocity vector m s−1



Nomenclature ix

V Visibility –

X,Y Satellite state vectors –

Z Altitude m

Greek symbols

Symbol Description SI Units

α, δ Right ascension / declination Rad

β, λ Ecliptic latitude / longitude Rad

γ Antisolar angle Rad

δ Phase difference Rad

ε Obliquity of the ecliptic Rad

θ, φ Polar / azimuthal angle Rad

θ Argument of latitude Rad

κn HCW/Schweighart coefficients m

∆λ Wavelength bandpass m

Λ Coherence length m

λ Wavelength m

µ Standard gravitational parameter N m2 kg−2

ρ Atmospheric density kg m−3

τ Coherence time s

ϕ Phase Rad

ψ Angular separation of spacecraft Rad

Ω Longitude of the ascending node Rad

ω Angular velocity s−1

Coordinate systems

Symbol Description SI Units

I ECI frame –

x̂, ŷ, ẑ ECI unit vectors m

L LVLH frame –

ρ̂, ξ̂, η̂ LVLH unit vectors m

C Curvilinear LVLH frame –



x Nomenclature

b̂, ô, ŝ Baseline unit vectors m

B Baseline frame –

û, v̂ UV unit vectors m

Constants from the modified Schweighart & Sedwick (2002) model

Symbol Description SI Units

c Schweighart angular velocity correction –

k Schweighart constant s−1

l Schweighart cross-track constant m s−1

q Schweighart cross-track constant s−1

α Schweighart motion equation constant s−1

β Schweighart motion equation constant –

γ Schweighart motion equation constant –

δ Schweighart motion equation constant –

ζ Schweighart motion equation constant m

φ Schweighart cross-track constant Rad

σ Schweighart constant s−1

Subscripts

Symbol Description SI Units

⊕ Earth –

c Chief –

d Deputy –

Other symbols

Symbol Description SI Units

� Vernal equinox –



Contents

Acknowledgements and Declaration iii

Abstract v

Nomenclature vii

1 Introduction 1
1.1 The case for space interferometry . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The basics of interferometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Interferometry in astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Developments in space-based interferometry . . . . . . . . . . . . . 9
1.4 The Astrophysical Space-interferometer Pathfinder . . . . . . . . . . . . . 13

1.4.1 A pathway towards space interferometry . . . . . . . . . . . . . . . 13
1.4.2 Mission design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Orbit Determination 16
2.1 Coordinate frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 ECI - Earth-centred inertial frame . . . . . . . . . . . . . . . . . . . 16
2.1.2 LVLH - Local vertical, local horizontal frame . . . . . . . . . . . . . 16
2.1.3 Curvilinear LVLH frame . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Baseline frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 LVLH orbit determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 ECI orbit determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Defining the chief orbit . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 Determining the deputy orbits . . . . . . . . . . . . . . . . . . . . . 23

3 Orbital Perturbations 27
3.1 Non-perturbed motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The J2 perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 The geopotential model . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 J2 in the LVLH frame . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Atmospheric drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Orbital Corrections and Constraints 39
4.1 The delta-v budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Correcting during integration . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Correcting the rest of the orbit . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 One orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Multiple orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Reconfiguring the orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xi



xii Contents

5 Observability of the Satellite Array 48
5.1 Is it observable? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 The Sun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.2 The Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.2 Satellite sky coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Filling the UV plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6 Conclusion and Future Work 59

Bibliography 61

A Appendix 65
A.1 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.2 The geopotential model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.3 Derivation of the J2 LVLH equations of motion . . . . . . . . . . . . . . . . 70



Chapter 1

Introduction

1.1 The case for space interferometry

Since the first confirmed exoplanet detection of 51 Peg b by Mayor & Queloz (1995), there
has been a desire to directly image and study exoplanets without relying on indirect
methods such as transits and radial velocity measurements. While these methods have
produced a large number of exoplanet detections since 51 Peg b, they are limited by
selection biases and do not allow many of the properties of the planet to be studied.
In particular, one of the major goals of exoplanet research is identifying potentially
habitable worlds that may harbour life. To determine this, one would need to study
the atmosphere of the planet. Radial velocity techniques cannot provide atmospheric
information, and current transmission spectroscopy is not precise enough to obtain high
quality data (Defrère et al., 2018).

This is where direct imaging becomes important - by directly imaging an exoplanet,
it is possible to obtain information about the atmosphere and surface, and therefore
determine if a “biosignature” is present. According to Léger et al. (2011), a biosignature is
“an observable feature of a planet, such as its atmospheric composition, that our present
models cannot reproduce when including the abiotic physical and chemical processes
we know about”. Biosignatures were first studied by Sagan et al. (1993), who used the
Galileo probe to look back at Earth and determine if a biosignature could be found a
priori. This study was successful, finding that a multitude of molecules such as O2 were
significantly out of thermodynamical equilibrium and were inexplicable through abiotic
processes. Extending this analysis to exoplanets is a tantalising research goal.

However, many obstacles stand in the way of direct imaging of an exoplanet. The
most prominent of these concerns separating the emission of the planet from that of its
host star. As calculated by Angel & Woolf (1997), the contrast between the star and a
300 K terrestrial planet (using the Sun/Earth ratio as an analogue) is an astounding 1010

in visible light. That said, a judicious choice of wavelength can reduce this contrast by
multiple orders of magnitude; viewing in the mid-infrared (10µm) reduces the contrast
to 107 (Angel & Woolf, 1997). The contrast over different wavelengths can be seen in
the plot by Defrère et al. (2018) (Fig. 1.1). There are other reasons for choosing the
mid-infrared as well - Angel et al. (1986) found that there are multiple molecular lines
between 7 and 17µm, specifically H2O at 7µm, O3 at 9.7µm and CO2 at 15µm. O3 is
particularly useful as it can be used as a tracer for O2. These molecules are ideal for
determining biosignatures, especially for life on Earth as we know it.

While the mid-infrared contains many advantages over the visible, there are still two
main complications. The first issue is that while the emission from a 300 K exoplanet
peaks in the mid-infrared, the Earth’s emission peaks as well. Fridlund (2002) finds

1



2 Introduction

Figure 1.1: Contrast between the Sun and the Earth (as analogues for a terrestrial
exoplanet system) for different wavelengths as viewed from 10 pc away. Also contains
molecular signatures that are conducive to detecting biosignatures. Plot obtained from
Defrère et al. (2018).

that ground-based telescopes would be overwhelmed by their own 300 K emission at
wavelengths longer than 1.7µm, as well as having to manage the bright atmospheric
emission. A telescope located in space would not have these issues as it would not have
to compensate for the atmosphere and could be passively cooled to far below 300 K.

The other main issue regarding exoplanet imaging is the angular resolution required:
for a planet 1 AU out from a host star at 10 pc, an angular separation of 0.1” would
be required. This corresponds to a mirror diameter of at least 60 m for a conventional
aperture telescope (Angel & Woolf, 1997), a size double that of the Extremely Large
Telescope (ELT) class telescopes currently being constructed. Hence, even for a
mid-infrared space telescope such as the James Webb Space Telescope (JWST), exoplanet
imaging is out of reach due to the angular resolution required (Defrère et al., 2018). For
this reason, interferometry was found to be the ideal method to circumnavigate this issue,
as an interferometric baseline can function as a large aperture. With interferometry, one
can achieve high spatial resolution with small apertures; ideal for space-based telescopes
(Angel & Woolf, 1997). Quanz et al. (2018) also find that a mid-infrared interferometer
would be complementary to or even better than an optical/near-infrared space telescope
at detecting exoplanets. This is significant as the costs for a large scale space-based
mid-infrared interferometric mission (such as Darwin) would be more economical
(∼$1.2B (Cockell et al., 2009)) than the equivalent space-based optical telescope (e.g.
LUVIOR at < $10B National Aeronautics and Space Administration (2019)).

These two problems regarding sensitivity and angular resolution are related to each
other. For example if one was to look for exoplanets of a fixed temperature around a dim
M type star, while the sensitivity requirements would be lower, the angular resolution
requirements would be larger. This is due to the distance of the habitable zone of a
stellar system being inversely related to the stellar flux of the star (Kasting et al., 1993).
A plot from Defrère et al. (2018) in Fig. 1.2 illustrates the relation between the angular
resolution and sensitivity required for different types of stars. Thus, in order to study
a majority of terrestrial planets without selection biases, one cannot simply neglect one
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Figure 1.2: Contrast between a planet and star compared with their angular separation
for different types of stars. Due to the inverse relationship, in order to image exoplanets
to the fullest extent, one must have high sensitivity as well as high angular resolution.
Plot obtained from Defrère et al. (2018).

of these problems - both must be addressed. Fig. 1.3 shows the relationship between
the sensitivity and angular resolution requirements for various stars, comparing the
current and potential capabilities of ground and space-based telescopes. As can be
seen, space-based telescopes such as JWST will have the sensitivity to start probing
these systems, but lack significantly in angular resolution. Conversely, the ELT class of
telescope will just have the angular resolution but not the sensitivity required due to their
location on the ground. For these reasons, space-based interferometry has been deemed
the best way forward in directly imaging exoplanets (Fridlund, 2002).

1.2 The basics of interferometry

Interferometry is the science of measuring the interference of electromagnetic waves
(Lawson, 2000). It is emerging as an important tool in astronomy, as it allows access
to high angular resolution measurements of objects that single aperture telescopes
simply cannot achieve; whether that be due to cost or from a fundamental engineering
standpoint. A brief description of how an astronomical interferometer functions follows.

If we consider two telescopes with positions x1 and x2, the separation between the
two is known as the baseline of the system ∆b = x2 − x1. Then let us consider a star
located at a position s from the centre of the pair of telescopes. The ‘pointing’ direction,
or star vector, is then given by ŝ. Using the scalar field approximation, we find that the
monochromatic electromagnetic fields incident on each telescope are given by

E1 = A1e
−ikŝ·∆be−iωt

E2 = A2e
−iωt, (1.1)
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Figure 1.3: Capabilities for directly imaging Earth like exoplanets with various ground
and space-based telescopes. Only a space interferometer will allow us to probe a
significant sample of these planets. Figure taken from Defrère et al. (2018).

where k is the wavenumber of the field and ω is the angular frequency (Haniff, 2007).
Fig. 1.4, taken from Lawson (2000), illustrates this setup. If we assume that the waves are
then propagated through different optical paths, d1 and d2, and are directly combined at
a detector, we find the fields obtain further phase differences (δj = kdj) based on these
lengths. Just before entering the combiner, the electric fields can be described by:

E1 = A1e
−ikŝ·∆be−iωte−ikd1

E2 = A2e
−iωte−ikd2 . (1.2)

Now, an optical detector measures the time averaged intensity (denoted by 〈〉) of the
incident electric fields (Haniff, 2007):

I = 〈|E|2〉 = 〈E∗E〉. (1.3)

An interferometer measures the superposition of the two electric fields arriving from the
two telescopes. If we assume equally sensitive telescopes (setting A1 = A2 = A), then the
detected intensity is given by:

I = 〈|E1 + E2|2〉
= 〈|E1|2〉+ 〈|E2|2〉+ 〈E1E

∗
2〉+ 〈E2E

∗
1〉

= A2(2 + e−i(kd1+kŝ·∆b−kd2) + ei(kd1+kŝ·∆b−kd2))

= 2A2(1 + cos k(d1 − d2 + ŝ ·∆b)). (1.4)

The quantity D = d1 − d2 + ŝ · ∆b is known as the optical path delay or optical path
difference of the measurement. In the space of a delay, the power will vary harmonically
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Figure 1.4: A simple interferometer setup, taken from Lawson (2000). Here B = ∆b
represents the baseline of the interferometer, consisting of telescopes at x1 and x2. The
position of the target star is denoted s, and d1/d2 are the two different optical paths
(modified through delay lines).
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(a) Monochromatic (b) Polychromatic

Figure 1.5: Comparison of the coherence of the interference fringes for monochromatic
and polychromatic interferometers. It is given as a function of the optical path delay D.
Retrieved from Lawson (2000).

with a period equal to the wavelength of light λ. If we then consider then moving the
star vector ŝ, we see that the adjacent maxima of the power oscillations are found at
angular separations ∆s = λ

∆b . This shows that the theoretical angular resolution that
an interferometer can achieve is only determined by the wavelength of light observed
and the baseline of the telescopes. The larger the baseline or shorter the wavelength, the
better the resolution.

However, interferometers function with a finite bandpass and are hence
polychromatic, leading to complexity in the measurement. Haniff (2007) shows that,
assuming a uniform response pattern over a wavelength band ∆λ centred at λ0, the
resultant polychomatic intensity is given by

I = 2A2∆λ

[
1 +

sin
(
πD∆λ/λ2

0

)
πD∆λ/λ2

0

cos(kD)

]
= 2A2∆λ [1 + sinc(πD/Λ) cos(kD)] . (1.5)

A comparison of the monochromatic and polychromatic intensity of the interference
fringes is shown in Fig. 1.5. The intensity is effectively the same, except that instead
of a constant fringe amplitude, the fringes are modulated by a sinc function with a
characteristic scale of

Λ =
λ2

0

∆λ
. (1.6)

This quantity is known as the coherence length. The sinc function in equation 1.5 is
simply a product of the bandpass function chosen: the modulation function is the Fourier
transform of the bandpass. Thus, for generality, the fringe envelope can be written as

1 +G(Λ, D) cos(kD), (1.7)

where G is the envelope modulation function. Due to this modulation, the signal drops
off considerably when offset from D = 0. Essentially, Λ determines how precise the
delays must be matched in order to maintain maximum power in the fringes (Lawson,
2000).
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Considering two separate unresolved sources (such as a star and a planet), Buscher &
Longair (2015) show that the resultant combined intensity distribution is simply the sum
of each separate intensity distribution:

Itotal = I(A1, ŝ1) + I(A2, ŝ2). (1.8)

For an extended source, it is useful to define a quantity known as the complex visibility,
given by Lawson (2000) as

V (u, v) =

∫
F (α, β)e−2πi(αu+βv)dαdβ, (1.9)

where F is the brightness distribution of the object as a function of angle on the sky. The
relationship between the output intensity and complex visibility is treated in Buscher &
Longair (2015):

I ∝ A(1 + Re(V (u, v)e−ikD)). (1.10)

The spatial frequencies u and v are defined by

u ≡ k∆bx
2π

v ≡ k∆by
2π

. (1.11)

Fundamentally, we want to measure the complex visibility, as the flux/brightness
distribution is simply the Fourier transform of the visibility. This relation is commonly
known as the van Cittert-Zernike theorem (van Cittert (1934); Zernike (1938)). If
an interferometer makes visibility measurements spanning a large number of spatial
frequencies u and v, one can perform a discrete Fourier transform to identify the
brightness distribution of the object. The quality of the distribution is a strong function
of the u, v plane coverage - the more measurements taken with different baseline lengths
and position angles, the better the image.

Now, it is very difficult to measure the phase of the complex visibility for a two
element interferometer. This is because the phase requires knowledge of a reference
star path length in an inertial coordinate system to an extremely precise degree. For
example, to measure phase to within 3 degrees (a signal to noise ratio of ∼20) at visible
wavelengths, this reference path length has to be known to within 5 nm. Instead, we
can use a technique known as differential phase referencing, where a broad part of the
continuum of a spectrum serves as a reference for the phase, and this reference is applied
to a narrow science region of interest (Monnier, 2003). For example, if the continuum
comes from an unresolved source (say a quasar with a compact core), the reference
path length can be computed from this source. Then the emission flux surrounding this
continuum emission (e.g. the broad line region around a quasar) can be imaged, with the
centre of the image being the unresolved source.

1.3 Interferometry in astrophysics

Interferometry has been invaluable in allowing astronomers to achieve high angular
resolution not possible with photometry and spectroscopy. Perhaps one of the best
known uses of interferometry is the measurement of stellar diameters. Fizeau (1868)
was the first to suggest that one could determine the stellar diameters of the sources
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by analysing the interference fringe contrast. However, it was only with the work of
Michelson & Pease (1921) that this hypothesis was able to be tested; they calculated the
diameters of stars using baselines larger than 3 m.

During this time, McCready et al. (1947) were the first to use interferometry in the
radio domain. As a result of the large wavelength, the coherence length is much longer
and thus is easier to work with. This led to huge leaps in resolution for radio astronomy,
as the long wavelength requires either gigantic telescopes or long baselines. The field of
radio astronomy continues to heavily rely on interferometry: the world’s current largest
radio interferometer, the Event Horizon Telescope, took an image of the event horizon of
the black hole at the centre of M87 this year (Akiyama et al., 2019).

Optical interferometry stalled, however, due to the difficulty in dealing with the
short coherence length. It was only with the work of Labeyrie (1975), coinciding with
the invention of new detectors and other technologies, that the field was re-energised.
Labeyrie (1975) was the first to combine the light from two separated telescopes working
with optical light to produce interference fringes. This work has continued to this day,
and has been instrumental in determining the effective temperatures of stars through an
accurate measurement of the angular diameter (Boyajian et al., 2012).

Interferometry has had many other breakthrough discoveries. Rousselet-Perraut et al.
(2010) were able to use VEGA instrument on the CHARA interferometer to spatially and
spectrally resolve the Hα emission line on the Herbig Ae star AB Aur, which was then
used to probe the accretion process of the star. Even more excitingly, the high angular
resolution of the PIONIER instrument on the Very Large Telescope Interferometer (VLTI)
has allowed stellar surfaces to be directly imaged in the near-infrared without reliance
on models (Ohnaka et al. (2017); Paladini et al. (2018)). Stellar surface imaging through
interferometry has even allowed us to investigate stellar atmospheric properties, such as
convection and starspots, on stars other than the Sun (Roettenbacher et al., 2016).

The Planet Formation Imager (PFI) (Monnier et al., 2018) is a proposed mid-infrared
interferometer that aims at imaging the formation process of exoplanets and early
planetary systems. It consists of twelve 3 m class telescopes arranged in either a Y or
ring array, providing an angular resolution of 0.6 mas at 3.5µm or 1.7 mas at 10µm. This
will allow for the ability to resolve the protoplanetary disks for nearby stars, but will not
go far enough to image an exoplanet specifically. However, a space version of PFI, based
on the work developed in this thesis, may become a step towards the eventual goal of
detecting exoplanetary biosignatures.

Stars and exoplanets are not the only objects that can be studied with interferometry;
quasars are also prime candidates, being bright objects that require high angular
resolution. The additional presence of a compact central core and a larger, broad line
region also allows differential phases to be calculated easily (see Section 1.2). Using the
GRAVITY instrument on the VLTI, GRAVITY Collaboration (2018) measured the quasar
3C 273 in unprecedented detail, achieving a resolution of 10−5”, which is less than 1 pc in
linear distance. Through these measurements, they were able to identify the mass of the
black hole, the radius of the accretion disk and the inclination of the disk which matched
radio jet observations.

However, GRAVITY Collaboration (2018) also highlighted that ground-based
interferometry is currently limited to objects with magnitudes < 12 in the infrared. This
is due to atmospheric turbulence, which for interferometry is quantified by the coherence
time τ ≡ r0

vwind
, where r0 is the Fried parameter (a measure of the quality of optical

transmission through the atmosphere) and vwind is the wind speed (Monnier, 2003). The
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coherence time sets a limit as to how long the integration can be before the phase of
the measured visibility moves more than one radian due to the atmosphere. At 500
nm, r0 ∼ 10 cm, and assuming a wind speed of 10 m/s, we arrive at a coherence time
of τ = 10 ms. This is an incredibly short integration time, which results in the bright
magnitude limit. The main benefit of a space-based interferometer is that we can negate
this limit by removing the atmosphere and having a coherence time on the order of
10 s. This is an increase in gain of 1000, leading to an increase of the magnitude limit
by 7.5 mag.

Even more recently, and more directly related to this work, Lacour et al. (2019) used
GRAVITY on the VLTI to directly image the exoplanet HR 8799e using interferometry.
This was the first time that extremely high resolution data was obtained for an exoplanet,
in particular a spectrum of the exoplanet’s atmosphere. Using this spectrum, Lacour et al.
(2019) were able to identify the composition of the planet, finding an atmosphere with a
large excess of carbon monoxide and clouds of iron and silicate dust. Such observations
have not been possible before, highlighting the importance of high sensitivity, high
angular resolution measurements that can only be obtained using optical interferometry.
However, it should be noted that all current and proposed interferometers are currently
ground-based, leading to restrictions in the integration time and sensitivity due to the
atmosphere.

1.3.1 Developments in space-based interferometry

The first design of a space-based interferometer for the purpose of exoplanet research was
proposed by Bracewell (1978). His design, known as a nulling interferometer, was the
basis for most of the interferometers designed in future years. A nulling interferometer
is designed to enhance the planet’s light over the power of the star by placing an
interference null over the star. This is achieved by having two incident beams of light
with the same optical path length and introducing a phase shift of π on one of them
(Fridlund, 2004). The light then destructively interferes at the central minimum and
constructively interferes at an angle θ = λ/2∆b away from the central minimum. If the
baseline of the interferometer is adjusted so that the planet is an angle θ away from the
star, then the planet’s emission is maximised while most of the star’s light is removed.
The contrast is then limited to light leaks from the the central minimum due to optical
and mechanical imperfections (Fridlund, 2004).

While a single two-element nulling interferometer would achieve high angular
resolution and sensitivity, there are other issues that need to be addressed. In particular,
the zodiacal light from our own solar system would outshine the residual light at
10µm from a nulled star at 10 pc by a factor of 1000, creating a background-dominated
regime (Mennesson & Mariotti, 1997). To compensate for this, Angel & Woolf (1997)
proposed using a four-element interferometer, rather than the regular two elements. This
configuration is essentially two superimposed Bracewell interferometers with different
spacings to provide a very broad and deep central minimum, as well as narrower fringes
to separate the diffuse dust and unresolved planets. Other methods of discriminating
against the zodiacal light include switching geometrical arrangements or moving the
telescopes to modulate the planet signal with respect to the dust (Fridlund, 2002). Léger
et al. (1996) proposed to simply locate the interferometer at 4-5 AU, so that the zodiacal
dust would not pose a problem. Finally, Martinache & Ireland (2018) presented a
technique that allows for a robust exoplanet detection in the presence of optical phase
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Figure 1.6: Schematic of the SAMSI mission in Low Earth Orbit. Taken from Stachnik
et al. (1984).

perturbations without requiring a very deep minimum.

As well as local zodiacal dust, exozodiacal dust must also be considered. As
Mennesson & Mariotti (1997) points out, even if an interferometer was located at 4-5 AU
from the sun, the exozodiacal light would outshine a 1 AU planet by a factor of 400, and
after nulling would still produce a contrast on the order of 30. The eventual solution to
this issue was to have an asymmetrical configuration of telescopes, which when rotated
would allow the planet and exozodiacal light to be distinguished without ambiguity.
This configuration eventually developed into the Darwin mission, described later in this
chapter (Léger et al., 1996).

Space interferometry was studied extensively in the 1980s and 1990s, particularly by
the European Space Agency (ESA) who identified it as a key goal in the Horizon 2000
plan (Fridlund, 2002). As a result of this, many proposals and concepts for missions were
developed over several conferences and workshops. Among these were rigid structures
such as COSMIC (Traub & Carleton, 1985) and FLUTE (Labeyrie et al., 1980), and free
flying interferometers such as OASIS (Noordam et al., 1985), TRIO (Labeyrie et al., 1985)
and SAMSI (Stachnik & Gezari, 1985). The last two are of particular note. The TRIO
proposal eventually led to the development of the Darwin mission (Labeyrie et al., 2000).
The other proposal, SAMSI, shares some details in common with the interferometric
array that we will investigate in this thesis. It should be noted that all of these proposals
are not refereed papers or concepts that reached a preliminary design phase and should
be treated as concepts at a feasibility study level.

SAMSI (Spacecraft Array for Michelson Spatial Interferometry) consisted of three
telescopes in Low Earth Orbit at identical orbits but for differing inclinations, shown
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Figure 1.7: Schematic of the location of the L2 Lagrange point compared to the Earth,
Moon and Sun. Taken from European Space Agency (2013).

in Fig. 1.6 (Stachnik et al., 1984). The central spacecraft is situated at the equioptical path
position of the system, so that the optical path difference between the two side spacecraft
is minimised. An optical delay line would then be used to correct for the remaining
difference. The SAMSI array would be located at 1000 km above the Earth, where it
was deemed that J2 (the perturbation due to Earth’s oblateness) and solar perturbations
would be the main perturbations to consider. Atmospheric drag was neglected due to
the high altitude of the orbits. Finally, Stachnik et al. (1984) considered that with a 10 km
baseline, the interferometer could achieve 10−5” resolution and potentially a magnitude
limit of 15-20.

After these initial proposals, two flagship missions were devised: NASA’s Terrestrial
Planet Finder (TPF) mission (Beichman et al., 1999) and ESA’s Darwin mission (Léger
et al., 1996). Both of these missions were free flying arrays of satellites orbiting around
the Sun-Earth L2 point. The L2 Lagrange point is a good location for space observation,
as a satellite maintains roughly the same position with respect to the Earth and the Sun.
A diagram of the location of L2 with respect to the Earth’s orbit is shown in Fig. 1.7.

TPF aimed to study terrestrial exoplanets using four 3.5 m telescopes and one central
spacecraft holding the beam combiner, observing at wavelengths between 7-20µm
(Beichman et al., 1999). The particular arrangement was originally the double Bracewell
proposed by Angel & Woolf (1997), but eventually became an “Emma X-array”, an
arrangement consisting of the four telescopes flying in rectangular formation and the
beam combiner located about 1200 m above the array (Defrère et al., 2018). Two
pathfinder missions were initially identified to demonstrate the technology required
for TPF (the Space Interferometry Mission SIM (Shao, 1998) and the Starlight mission
(Blackwood et al., 2003)). However neither of the pathfinders, and eventually TPF itself,
were funded due to budget cuts in 2007.

Similarly, Darwin was originally designed to have six 1.5 m satellites in a hexagonal
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Figure 1.8: Artist concept of the Darwin spacecraft in an early configuration. Retrieved
from European Space Agency (2003).

configuration, operating between 5 − 10µm, with a beam combiner in the middle
(Fridlund, 2004). This configuration was designed to allow the use of multiple baselines
for better nulling (Angel & Woolf, 1997) and to allow for two dimensional imaging of an
exoplanet system. An artist concept of the original Darwin satellite constellation is shown
in Fig. 1.8. The baselines were designed to be tuned to an individual star so that the
habitable zone was always at the angle of maximal constructive interference, a baseline
typically around 1 km. In order to distinguish the planet signal from the exozodiacal
light, the whole system was designed to be rotated and switched asymmetrically between
different orientations, so that the signal was modulated. Eventually, Darwin also adopted
a four telescope/one beam combiner “Emma X-array” configuration near the end of the
design study (Cockell et al., 2009). Again, due to budget cuts, Darwin was not funded and
ceased being investigated in 2007. ESA is currently planning for the next 30 years as part
of the Voyage 2050 process, and a revised Darwin-like mission LIFE (Large Interferometer
For Exoplanets) (Quanz et al. (2018); Quanz et al. (2019)) is part of the discussion.

A final notable mission proposal is that of Pegase (Le Duigou et al., 2006). Pegase
was to be located at the Sun-Earth L2 Lagrange point and consisted of a linear array
of three spacecraft - two light collecting telescopes and a beam combiner. The baseline
was designed to be adjustable from 50-500 m, with an angular resolution from 1-20 mas.
Le Duigou et al. (2006) designed Pegase as a simple two-element Bracewell interferometer.
While studies from Angel & Woolf (1997) found this was insufficient to detect terrestrial
exoplanets and could not separate exozodiacal light from the planet signal, this was
unimportant for Pegase, which was to search for hot Jupiters with a much higher flux
and at a shorter wavelength (2.5-5µm) than that of Darwin. Like the previous missions,
Pegase did not move beyond the design phase.

The geometry of Pegase is very similar to the array studied in this thesis and can
provide insight into the formation flying mechanisms that need to be considered. Pegase
had a two level control structure: a coarse level control at the satellite level, and fine
control at the optics level (Le Duigou et al., 2006). The fine control loops consisted of
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Figure 1.9: A proposed pathway towards achieving high sensitivity space interferometry.

displacing optical delay lines inside the central spacecraft, as well as moving fast steering
mirrors. With these controls, the central fringe should be kept steady, as long as the
satellites are stable during integration time. To account for this, the coarse control loop
split the integration time into short periods of 100 s where the satellite is left drifting
under natural perturbations. Then, every two integration periods, thrusters would be
used to correct for the perturbations, disrupting the fringe tracking for a short period of
time. The fine control loop used integration times of 20 ms. In Chapter 4, we investigate
whether a similar model might be adopted for our space interferometer pathfinder.

1.4 The Astrophysical Space-interferometer Pathfinder

1.4.1 A pathway towards space interferometry

The biggest issue with the previous attempts of space interferometry by NASA and ESA
was the lack of feasible, smaller scale pathfinders that would allow a development of the
technology needed for a large scale mission. Hence, here we propose a pathway that
will take steps towards achieving the full technology needed to detect biosignatures on
exoplanets. The pathway is shown in Fig. 1.9.

We propose to start with a ground-based robotic system that demonstrates the
configuration and interferometric capabilities of an array of satellites. This ground
pathfinder, named Pyxis, is awaiting the outcome of an ARC discovery grant proposal
(Ireland, DP20). Afterwards, a small nano-satellite array would be launched into orbit to
prove the technology developed in the Pyxis stage. Due to the costs of launching, this
array would likely be put in Low Earth Orbit (LEO). The next step would be to put a
larger satellite array in Mid Earth Orbit, that could act as a space-based version of the
current ground-based instrument PFI (Planet Formation Imager). While not sensitive
enough to analyse the spectrum of exoplanets, it would be able to detect planets in the
process of forming and contribute massively to the field of exoplanet formation. Finally,
the flagship sized Darwin-type mission at L2 (LIFE) would be ready, having had the
various technologies developed in stages and with less uncertainty as to whether this
approach is feasible.

1.4.2 Mission design

We now return to stage two in the pathway, a LEO mission with the aim to demonstrate
the feasibility of an optical interferometer in space, temporarily named ASP: the
Astrophysical Space-interferometer Pathfinder. This thesis’ purpose is to investigate
the orbital dynamics and observability constraints of such a mission. This mission
will be working in the optical part of the spectrum; this is due to the challenges
with mid-infrared interferometric technologies (such as earthshine preventing a cooled
LEO mission), and the need for ensuring that space interferometry is feasible before
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Figure 1.10: Preliminary design of the Astrophysical Space-interferometer Pathfinder
(ASP) Mission.

introducing more complications. We also anticipate that this mission will have an altitude
of about 500 km and a lifetime of three years.

Our proposed design is to have a linear array of three nano-satellites, two telescopes
(hereby called the deputies) and one beam-combiner (called the chief). The telescopes
would ideally be 3U CubeSats to minimise cost, containing the optical system, solar
power system, attitude control and a single thruster. The beam-combiner would be
larger: a 6U CubeSat with the required interferometric optics (including a delay line),
ideally one thruster, a solar power system, metrology system, attitude control and
communication system. A diagram of this initial design, with required space for each
subsystem, is shown in Fig. 1.10. This is an ambitious design in terms of space
requirements, and also thruster requirements as each satellite will only have a single
thruster.

To comfortably keep track of interference fringes, we need to keep the optical
path between the two arms of the interferometer within the coherence length of the
beam-combiner. The optical path difference is given by the equation

D = |∆r1| −∆r2 · ŝ− |∆r2|+ ∆r2 · ŝ ≈ 0, (1.12)

where ∆r is the separation of one of the deputies from the chief, and ŝ is the unit vector
in the direction of the star. To resolve velocities of 100 km/s per spectral channel with a
central wavelength of 658 nm, we have to distinguish wavelengths separated by

∆λ = λ
v

c
= 0.2 nm
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This results in a coherence length of about 2 mm. However, an optical delay line
inside the beam combiner should be able to alleviate the requirements on the satellites
themselves, as was proposed for the Darwin mission (Karlsson & Kaltenegger, 2003). If
the 6U form factor is adopted, then we can assume 20 cm of space for this line. As this
must compensate for both satellites, and because increasing the delay on one satellite will
decrease the delay on the other, we have a total tolerance of about 5 cm. Hence, we need
to keep the satellites in position such that the optical path difference between the two is
less than 5 cm. To achieve this we require an accurate and precise metrology system to
know how much to adjust the delay line. The metrology system is not covered in this
thesis.

The ultimate aim of this project is to investigate whether this design will be sufficient
in terms of thrust and manoeuvrability, so that the array is able to conduct interferometry
in a LEO environment.

1.5 Thesis outline

The starting point for this feasibility study was a set of slides from a ten minute
presentation given earlier this year, as well as an ARC discovery proposal for Pyxis; a
ground-based technology prototype for a linear interferometric array. All work in this
thesis continues on from these two documents.

Orbital simulations will be created from scratch, since sophisticated spacecraft
dynamics software is proprietary and does not cover sub-orbit motions in great detail,
focusing instead on long term orbital motions. The stringent requirement on the optical
path difference requires us to examine these sub-orbit perturbed motions carefully, and so
a ground-up simulation gives us better insight than preexisting software. This approach
also provides greater flexibility by allowing us to analyse the motion in reference frames
that have greater scientific significance, such as one with unit vectors in the direction
of the interferometer baseline and the target star direction. Finally, we can conduct sky
coverage simulations built on the same code, eliminating the requirement to construct an
entirely new simulation.

The thesis outline is as follows. In Chapter 2, we will detail the various coordinate
frames required and the orbital configuration for the satellites. In Chapter 3 we will
introduce perturbations into the orbits, particularly the J2 gravitational perturbation and
atmospheric drag. Chapter 4 outlines a full numerical simulation, designed to identify
the thrust and ∆v required to keep the satellites in formation. Finally, Chapter 5 explores
the sky coverage of the interferometer, its performance in filling the UV plane and
potential science targets for the array.



Chapter 2

Orbit Determination

In this chapter, we will introduce the four coordinate frames that will be useful in the
development and analysis of the orbital configuration of the satellite array. We will then
briefly prove that a linear array will allow us to achieve an optical path difference of
zero, before then identifying how such a configuration is defined in an inertial geocentric
frame of reference.

2.1 Coordinate frames

2.1.1 ECI - Earth-centred inertial frame

The Earth-centred inertial (ECI) frame is a basic inertial coordinate frame I, centred on
Earth with the ẑ axis pointing towards true north, x̂ pointing towards the Vernal Equinox
(�) and ŷ completing a right-handed coordinate system. This is seen in Fig. 2.1. The ECI
frame has basis vectors

I = (x̂, ŷ, ẑ).

2.1.2 LVLH - Local vertical, local horizontal frame

The local vertical, local horizontal (LVLH) frame is a rotating coordinate system, L, with
the ρ̂ unit vector pointing from the centre of the Earth to the chief satellite, ξ̂ pointing
along the velocity of the chief satellite and η̂ pointing in the direction of the orbital
angular momentum vector. Essentially, this is a frame rotating with the chief satellite,
with the origin at the chief satellite’s position. Together, this gives

L = (ρ̂, ξ̂, η̂).

This frame is useful in that it allows us to calculate the relatively small separation
between the spacecraft without encountering major numerical issues due to the large
distances in the ECI frame. A visual representation of the coordinate system is shown in
Fig. 2.1.

Converting between the ECI and LVLH frames is simple. Let the position of the chief
spacecraft in ECI be rc and the velocity be vc. The unit vectors of the new frame are hence

ρ̂ =
rc

|rc|
ξ̂ =

vc

|vc|
η̂ = ρ̂× ξ̂. (2.1)

16
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Figure 2.1: Schematic of the Earth-centred inertial (ECI) and the local vertical, local
horizontal (LVLH) coordinate systems.

We define the change of basis matrix as

MI→L = [ρ̂, ξ̂, η̂]T . (2.2)

Then the position of an ECI vector rI in the LVLH frame is

rL = MI→LrI −MI→Lrc (2.3)

and the velocity of an ECI vector vI is

vL = MI→LvI − ω×MI→LrI , (2.4)

where ωL is the angular velocity vector in the LVLH frame, given by

ωL = [0, 0, ωc] =

[
0, 0,

∣∣∣∣rc × vc

r2
c

∣∣∣∣] . (2.5)

Directional vectors, such as ŝ, can be rotated into the new frame through multiplication
with the change of basis matrixMI→L.

2.1.3 Curvilinear LVLH frame

The curvilinear LVLH frame, C, is almost identical to the LVLH frame, with the exception
that the ξ̂ and η̂ vectors curve around the Earth as lines of latitude and longitude
rather than being tangential to the surface of the Earth. The conversion is a fairly
straightforward geometrical mapping to a sphere. This is shown in Fig. 2.2.

Consider a satellite with position rL = [ρL, ξL, ηL] and velocity vL = [ρ̇L, ξ̇L, η̇L] in
the LVLH frame. The subscript L denotes the linear frame. The radial position of this
satellite with respect to the centre of the Earth is then

r⊕ = [Rorb, 0, 0] + rL, (2.6)
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Figure 2.2: Comparing the curvilinear and rectangular LVLH coordinate systems.

where Rorb is the radius of the chief orbit. The radial distance is hence r⊕ = |r⊕|. We
define the azimuthal and polar angle respectively between the deputy and the origin of
the LVLH frame as

φ = tan−1(
ξL

Rorb + ρL
) θ = sin−1(

ηL
r⊕

). (2.7)

The rate of change of the radial distance and these angles with respect to time can be
found by differentiating these definitions:

ṙ⊕ =
r⊕ · vL
r⊕

φ̇ =
ξ̇L(Rorb + ρL)− ξLρ̇L
ξ2
L + (Rorb + ρL)2

θ̇ =
η̇Lr⊕ − ηLṙ⊕
r⊕

√
r2
⊕ − η2

L

, (2.8)

and so the position and velocity in the curvilinear frame is

rC = [r⊕ −Rorb, Rorbφ,Rorbθ] vC = [ṙ⊕, Rorbφ̇, Rorbθ̇]. (2.9)

The inverse relationships are:

r⊕ = Rorb + ρC

φ =
ξC
Rorb

θ =
ηC
Rorb

φ̇ =
ξ̇C
Rorb

θ̇ =
η̇C
Rorb

, (2.10)

giving the rectangular LVLH positions as

ρL = r⊕ cos(φ) cos(θ)−Rorb

ξL = r⊕ sin(φ) cos(θ)

ηL = r⊕ sin(θ). (2.11)
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Figure 2.3: Schematic of the baseline coordinate system.

2.1.4 Baseline frame

The baseline frame, B, is another critical frame, which is important for both the analysis
of the orbit and the corrections of perturbations. This basis is centred on the chief satellite
and has one axis along the baseline, one towards the star and a third orthogonal vector to
complete the basis. In this frame, for an ideal, functioning interferometer, we expect the
two spacecraft to have no positional component in the star direction and to only move
back and forth along the baseline axis.

The frame is defined as follows: the baseline must be tangential to the surface of
the Earth, as well as perpendicular to the star vector. To be tangential to the surface of
the Earth, the vector must be orthogonal to the chief’s position rc. Hence we define the
baseline unit vector as

b̂ =
rc × ŝ

|rc × ŝ|
. (2.12)

To round out the basis, the third orthogonal vector is

ô = ŝ× b̂. (2.13)

Therefore

B = (b̂, ô, ŝ).

A diagram of this frame is shown in Fig. 2.3.
Similarly to the LVLH frame, the baseline frame is centred on the chief spacecraft

and is thus rotating. The formalism to change between the ECI frame and this frame is
identical. We define the change of basis matrix as

MI→B = [b̂, ô, ŝ]T . (2.14)
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Then the position of an ECI vector rI in the LVLH frame is

rB = MI→BrI −MI→Brc (2.15)

and the velocity of an ECI vector vI is

vB = MI→BvI − ωB ×MI→BrI , (2.16)

where ωB is the angular velocity vector in the baseline frame. Since this frame is not
aligned with the orbit, we must first calculate the angular velocity in the ECI frame and
then rotate it:

ωB = MI→B
rc × vc

r2
c

. (2.17)

We can also transform to and from the LVLH frame in the following manner:

rB = ML→BrL vB = ML→BvL, (2.18)

where

ML→B = MI→BM
−1
I→L. (2.19)

2.2 LVLH orbit determination

Before beginning a more detailed analysis, we need to identify a configuration of this
array that will allow for interferometry. Recall that we need to keep the optical path
difference of the two deputy spacecraft to within at least 5 cm, where an optical delay
line can then compensate the rest. The optical path difference is given by the equation

D = |∆r1| −∆r2 · ŝ− |∆r2|+ ∆r2 · ŝ ≈ 0, (2.20)

where ∆r is the separation of one of the deputies from the chief, and ŝ is the unit vector
in the direction of the star. In order to control this without large angular mirror actuation,
we need an orbital configuration such that the two optical paths are perpendicular to the
star vector at all times. That is, ∆r · ŝ = 0.

Consider a frame of reference of a circular orbit, where the plane of the orbit is in the
x̂ − ŷ plane. Then, consider a star vector in this frame with spherical coordinates (θ, φ),
where θ is the polar angle and φ is the azimuthal angle from the x̂ axis. Finally, suppose
that a satellite in this orbit has a phase ωt from the x̂ axis. Then, in the LVLH frame, we
have that the star vector with respect to the satellite is

ŝ = [cos(φ− ωt) sin(θ), sin(φ− ωt) sin(θ), cos(θ)]. (2.21)

In 1960, Clohessy and Wiltshire developed a set of linear equations of motion
describing the motion of a satellite with respect to another in the LVLH frame (hereby
called the Hill-Clohessy-Wiltshire (HCW) equations) (Clohessy & Wiltshire, 2012). These
equations are an approximation, with no treatment of perturbations and assumptions of
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circular orbits. The HCW equations are given by

ρ̈ = 3ω2ρ+ 2ωξ̇

ξ̈ = −2ωρ̇ ω =

√
µ

R3
orb

η̈ = −2ω2η, (2.22)

where ω is the angular velocity of the system,Rorb the radius of the chief’s orbit and µ the
standard gravitational parameter. These equations can be solved with initial conditions
ρ0, ξ0, η0, ρ̇0, ξ̇0, η̇0, yielding

ρ(t) = 4ρ0 +
2ξ̇0

ω
− (3ρ0 +

2ξ̇0

ω
) cos(ωt) +

ρ̇0

ω
sin(ωt)

ξ(t) = ξ0 −
2ρ̇0

ω
− 6ωρ0t− 3ξ̇0t+

2ρ̇0

ω
cos(ωt) + (6ρ0 +

4ξ̇0

ω
) sin(ωt)

η(t) = η0 cos(ωt) +
η̇0

ω
sin(ωt). (2.23)

If we consider grouping with coefficients

κ1 = 4ρ0 +
2ξ̇0

ω
κ2 = ξ0 −

2ρ̇0

ω

κ3 = −(3ρ0 +
2ξ̇0

ω
) κ4 =

ξ̇0

ω

κ5 = η0 κ6 =
η̇

ω
(2.24)

and then making the substitution

κ3 = A1 cos(ϕ1) κ4 = A1 sin(ϕ1), (2.25)

we obtain ∆r(t) = [ρ(t), ξ(t), η(t)], where

ρ(t) = κ1 +A1 cos(ωt− ϕ1) (2.26)

ξ(t) = κ2 −
3ω

2
κ1t− 2A1 sin(ωt− ϕ1) (2.27)

η(t) = κ5 cos(ωt) + κ6 sin(ωt) (2.28)

Now, we see immediately in Equation 2.27 that if κ1 6= 0, then the orbital angular
momentum will change and the spacecraft will fly apart. Thus we set initial conditions
such that κ1 = 0 to remove this motion. Furthermore, suppose that the initial conditions
are chosen such that A1 is zero. Then the product ∆r · ŝ (using equation 2.23) is

∆r · ŝ =κ2(cos(ωt) sin(φ)− sin(ωt) cos(φ)) sin(θ)

+ κ5 cos(ωt) cos(θ) + κ6 sin(ωt) cos(θ). (2.29)

Finally, if we then set

κ5 = −κ2 tan(θ) sin(φ) κ6 = κ2 tan(θ) cos(φ), (2.30)

we have that ∆r · ŝ = 0 for all t. Hence a simple linear array will work for this mission,
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(a) Initial starting position (b) Rotation in inclination about x̂ axis

(c) Rotation in longitude about ẑ axis

Figure 2.4: Determining the orbit of the chief beam-combiner satellite

where the deputy satellites move up and down in the η̂ direction with a period equal to
that of the orbital period, with an offset in the ξ̂ direction. In terms of orbits, this means
that a configuration where the deputies are in orbits identical to the chief, albeit with a
small phase and inclination offset, will suffice in keeping the array perpendicular to the
star at all times.

2.3 ECI orbit determination

We will now describe how to implement the orbit of the chief satellite in the ECI frame,
as well as define rotations that will take the chief orbit and determine the deputy satellite
orbits in a manner such that they are perpendicular to the star. This section makes heavy
use of quaternions (conventional in spacecraft engineering), a treatment of which can be
found in Appendix A.1.

2.3.1 Defining the chief orbit

To define the orbit of the chief satellite, we begin with a circular orbit in the x̂− ŷ plane,
with radius Rorb. Rorb can be decomposed into an altitude Z and the Earth’s radius RE ,
such that Rorb = Z + RE . The satellite starts with a phase (ϕ) of zero on the positive x̂
axis, shown in Fig. 2.4a.

The orientation of a circular orbit is given by 2 parameters: the inclination ic and the
longitude of the ascending node Ωc. We first rotate in the inclination ic about the x̂ axis;
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Figure 2.5: Defining the coordinate system for use in orbit determination.

in quaternion form (Fig. 2.4b):
q(x̂, ic).

We then rotate in the longitude of the ascending node around the ẑ axis (Fig. 2.4c):

q(ẑ,Ωc).

This gives us that the satellite, at t = 0, has an argument of latitude θ = 0. In other words,
the chief satellite crosses the equator at t = 0. The full rotation can be combined to give

qc = q(ẑ,Ωc)q(x̂, ic).

The rotation can be applied to a vector u using

Q(u, qc) = (qc)p(q−1
c ), (2.31)

where p = uxi+ uyj + uzk.

2.3.2 Determining the deputy orbits

Our task is now to identify the rotations that will give us the deputy orbits from the
chief orbit. First, we define a star vector ŝ, which is in the direction of the star to be
observed. This can be composed through a simple conversion from right ascension (α)
and declination (δ):

ŝ = [cos(α) cos(δ), sin(α) cos(δ), sin(δ)]. (2.32)

In the absence of perturbations, we assume that the separation between each of
the deputies and the chief spacecraft is equal, and we denote this separation ∆r.
Furthermore, recall we require that ∆r · ŝ = 0 for all ϕ.

We now define a new coordinate system, shown in Fig. 2.5, based on the orbital plane
of the chief satellite: ẑ′ is in the direction of the angular momentum of the orbit, x̂′ is the
unit projection of the star vector on the orbital plane, and ŷ′ is the remaining orthogonal
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Figure 2.6: Satellite positions at ϕ′ = 0

vector. Mathematically:

ẑ′ = ĥ = Q(ẑ, qc) = [sin(ic) cos(Ωc), sin(ic) sin(Ωc), cos(ic)]

x̂′ =
ŝ− ẑ′(ŝ · ẑ′)
|ŝ− ẑ′(ŝ · ẑ′)|

ŷ′ = ẑ′× x̂′. (2.33)

We let the deputy spacecraft be aligned with the chief spacecraft along the ŷ′ direction
at the new phase ϕ′ = 0, located on the negative x̂′ axis. The separation between the first
deputy and the chief at this point is a minimum, defined at this stage to be ∆rmin. If
the star vector is in the plane of the orbit, then it is possible that the satellites will have to
“pass through each other” and thus the separation will be zero. This separation will need
to be redefined later in terms of the maximum separation of the spacecraft to account for
this. Nevertheless, for the moment this configuration has an angular separation defined
as ψ = |∆rmin|

Rorb
(|∆rmin| << Rorb). The other deputy is identical, replacing ψ with−ψ. The

initial configuration is shown schematically in Fig. 2.6. The position vectors (at ϕ′ = 0)
are hence

r1 = − cos(ψ)x̂′ − sin(ψ)ŷ′

r2 = − cos(ψ)x̂′ + sin(ψ)ŷ′. (2.34)

Since the orbits of the deputy satellites must pass through these points and are circular
orbits with a known radius, the orbits are constrained to only one degree of freedom: a
rotation about the position vectors described above with respect to the chief orbit.

To identify the angle of rotation, β, we turn to the position of the three satellites at
ϕ′ = π

2 , the maximum or minimum of the orbit in the ẑ′ direction and also the point of
maximum separation ∆r = ∆rmax. This is shown in Fig. 2.7. Here, we define θ to be the
angle between the star vector ŝ and the ẑ′ axis. That is,

θ = cos−1 (ŝ · ẑ′). (2.35)
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Figure 2.7: Satellite positions at ϕ′ = π/2.

Focusing in on the first deputy satellite (with positive ψ), we can see that at ϕ′ = π
2 , it is

at a minimum in the ẑ direction. Hence, the angle that the satellite makes with the chief
orbital plane at this point is the angle of rotation β. From this diagram, we can uncover a
few relations:

∆y′ = −Rorb cosβ (2.36)

∆z′ = −Rorb sinβ. (2.37)

Now, we know that the angular separation on the orbital plane between the chief and
first deputy spacecraft is ψ. Since |∆rmin| << Rorb, using the small angle approximation
we have

∆x′ = ψ|∆y′|
= |∆rmin| cosβ. (2.38)

Finally, we can relate this to the angle between the star vector and ẑ′ axis, θ:

tan θ =
∆z′

∆x′
=
−Rorb sinβ

|∆rmin| cosβ

ψ tan θ = − tanβ. (2.39)

Furthermore, since ∆y′ >> ∆z′, we can apply the small angle approximation:

β = −ψ tan θ. (2.40)

Before we continue, recall that we needed to redefine |∆rmin| in terms of the
maximum separation,as the minimum needs to be allowed to reach zero when the star is
in the orbital plane. Note that

|∆rmax| =
√

∆x′2 + ∆z′2

=
√

(ψRorb cosβ)2 + (Rorb sinβ)2. (2.41)
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Since β is small,

|∆rmax| ≈ Rorb

√
ψ2 + β2

= Rorbψ
√

1 + tan2 θ

⇒ |∆rmin| = |∆rmax| cos θ. (2.42)

Hence our definition of ψ becomes

ψ =
|∆rmax| cos θ

Rorb
, (2.43)

and the angle of rotation β becomes

β = −ψ tan θ

= −|∆rmax| sin θ
Rorb

. (2.44)

For the other satellite, it should rotate by −β. Checking the limits shows this works:
if the star is straight up (θ = 0°), the orbit would not have to tilt for the star to remain
perpendicular. If the star is parallel to the plane of the orbit (θ = 90°), then the minimum
separation |∆rmin| becomes zero as is required. The orbit will still rotate by β - this simply
means that the stars will always be in a vertical line along the direction of the ẑ′ axis.

So, writing the orbital plane rotations in quaternion form:

q1,plane = q (r1, β)

q2,plane = q (r2,−β) . (2.45)

Before the orbital plane is rotated, the phase should be adjusted for each of the deputy
satellites such that they start in the positions defined at ϕ′ = 0. This is a simple rotation
about the ẑ′ axis by ψ in the counterclockwise direction for r1 and clockwise for r2:

q1,phase = q(ẑ′, ψ)

q2,phase = q(ẑ′,−ψ). (2.46)

Combining the two gives the full rotation quaternions for the two deputy orbits, starting
from the chief orbit:

q1 = q1,planeq1,phase = q(r1, β)q(ẑ′, ψ)

q2 = q2,planeq2,phase = q(r2,−β)q(ẑ′,−ψ), (2.47)

and rotation functions for an arbitrary vector along the chief orbit u′ = Q(u, qc):

Q(u′, q1) = q1pq
−1
1

Q(u′, q2) = q2pq
−1
2 , (2.48)

where, to recall:
p = u′xi+ u′yj + u′zk. (2.49)



Chapter 3

Orbital Perturbations

While it would be ideal to analytically investigate the theoretical orbits discussed in the
previous chapter, the spacecraft array will experience perturbations to its orbit due to a
variety of effects. As we are interested in the behaviour of the array during the orbit, and
whether the configuration is stable enough to perform interferometry, these pertubations
are critical considerations. Among these perturbations are drag due to the atmosphere,
gravitational perturbations due to the Moon and Sun, solar radiation pressure and, most
importantly, the non-spherical nature of the Earth’s gravitational field.

A schematic of the magnitude of different perturbations at different altitudes is shown
in Fig. 3.1 from Montenbruck & Gill (2000). Here it is very apparent that at an altitude of
500 km (a radial distance from the centre of the Earth of 6.8 Mm) that the J2 gravitational
term is the dominating perturbation bar the spherical potential, followed by atmospheric
drag contributing a couple of orders of magnitude fewer. For this reason, our simulations
will only properly treat the non-sphericity of the Earth’s gravitational field, followed
by an order of magnitude calculation for drag. In more detailed control simulations,
other perturbation effects will need to be considered, but from a feasibility standpoint
this should suffice.

From here on, if not explicitly stated, we will be assuming that the altitude of the
array is 500 km and the maximum separation between a chief and deputy spacecraft is
|∆rmax| = 300 m.

3.1 Non-perturbed motion

Before introducing perturbations, we first should briefly look at the non-perturbed
motion of the system. Recall the Hill-Clohessy-Wiltshire (HCW) equations of motion -
a set of linear differential equations for calculating the motion of a satellite in the local
vertical, local horizontal (LVLH) frame (Clohessy & Wiltshire, 2012):

ρ̈ = 3ω2ρ+ 2ωξ̇

ξ̈ = −2ωρ̇ ω =

√
µ

R3
orb

η̈ = −2ω2η, (3.1)

where ω is the angular velocity of the system, Rorb the radius of the chief’s orbit and
µ the standard gravitational parameter. The advantage of calculating the motion in the
LVLH frame is that the distances are on the order of hundreds of metres, rather than the
thousands of kilometres in the Earth-centred inertial (ECI) frame. As we want to identify

27
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Figure 3.1: Order of magnitude plot for various perturbations acting on satellites at given
altitudes. GM refers to the standard gravitational spherical potential, and radiation
pressure assumes an area to mass ratio of 0.01 m2/kg. Vertical dashed lines represent
satellites at various altitudes above the Earth’s surface. Plot from Montenbruck & Gill
(2000).
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(a) i = 0°, Ω = 0°, α = 0°, δ = 90° (b) i = 90°, Ω = 90°, α = 0°, δ = 0°

(c) i = 90°, Ω = 90°, α = 0°, δ = 45°

Figure 3.2: Non-perturbed motion of the two deputy spacecraft with respect to the
chief. Plotted over 10 orbits in the curvilinear LVLH frame using the HCW equations
for different orbital configurations.

small separations less than a centimetre, this is ideal to avoid numerical errors.

Integrating these equations of motion allows us to see how the array moves through
the LVLH frame. To improve accuracy, the curvilinear variant of the LVLH frame was
used (see Section 2.1.3). The motion of the two deputies with respect to the chief for three
different orbits is shown in Fig. 3.2. Numerical errors due to conversion between the
ECI and curvilinear frames were identified up to a level of 10µm, and so the y axis was
prevented from zooming in further than this scale.

We see that in the absence of perturbations, an equatorial orbit (Fig. 3.2a) and a
polar orbit (Fig. 3.2b) where the star is perpendicular to the orbital plane (that is, the
satellites are following each other in-track) are identical up to numerical errors. The
in-track separation (∆ξ) remains constant over the orbit, and the other separations are
zero. For a polar orbit, but with the star at 45° from the orbital plane (Fig. 3.2c), we see
that the cross-track motion (∆η) is oscillatory. As explained in Section 2.2, this is due to
the satellites moving up and down to stay perpendicular to the star at all points in the
orbit. Overall, the motion is stable.
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3.2 The J2 perturbation

3.2.1 The geopotential model

For a more complete treatment of these gravitational perturbations, see Appendix A.2.
The Earth’s gravitational potential can be expanded in spherical harmonics:

U = −µ
r

[
1 +

∞∑
n=2

Jn

(
RE
r

)n
P 0
n(cos θ)+

∞∑
n=2

n∑
m=0

(
RE
r

)n
Pmn (cos θ)[Cmn cosmϕ+ Smn sinmϕ]

]
.

(3.2)

The first few coefficients are listed in Appendix A.2. The J2 zonal term is the most
important by several orders of magnitude, being the Earth’s oblateness term, and so
truncating the series at this point yields

U = −µ
r

[
1 + J2

(
RE
r

)2

P 0
2 (cos θ)

]

= −µ
r

[
1 + J2

R2
E

2r2
(3 cos2 θ − 1)

]
, (3.3)

where J2 is the zonal coefficient, approximately 0.00108. Being a zonal term, we note
that J2 does not change with longitude and is dependent on latitude. The J2 term of the
potential is

UJ2 = −J2
µR2

E

2r3
(3 cos2 θ − 1). (3.4)

Expanding back into ECI coordinates and taking the negative gradient gives the force
from J2:

F J2 = J2
3µR2

E

2r5

[(
1− 5

z2

r2

)
(xx̂+ yŷ) +

(
3− 5

z2

r2

)
zẑ

]
, (3.5)

and so the complete equation of motion in the ECI frame is

r̈J2 = − µ
r2
r̂ + J2

3µR2
E

2r5

[(
1− 5

z2

r2

)
(xx̂+ yŷ) +

(
3− 5

z2

r2

)
zẑ

]
. (3.6)

3.2.2 J2 in the LVLH frame

Calculating the J2 perturbation would require we integrate the ECI equations of motion
(Equation 3.6). Unfortunately, here we are presented with an issue - in the ECI frame, the
positions are of the order of thousands of kilometres. As before, it is thus ideal to try and
integrate the equations of motion in the LVLH frame.

The simplest approach in developing this equation of motion was conducted by
Schweighart & Sedwick (2002). This approach involved linearising the ECI equation of
motion in the LVLH frame. A “reference orbit” was also introduced, defined as a circular
orbit with a period adjusted for the J2 perturbation. The equations detail the position
and velocity of a satellite in the LVLH frame with respect to the reference orbit position,
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rather than the chief satellite. Hence, to find the separation between the chief and deputy
spacecraft, the difference between the relative positions of the chief and deputy with
respect to the reference orbit must be calculated. A more detailed derivation of the
equations described below are found in Appendix A.3.

In the absence of perturbations, the reference orbit is rotating with an angular velocity
given by

ω = ωη̂

ω =

√
µ

R3
orb
. (3.7)

Through averaging the angular velocity over the J2 perturbation, the reference orbit must
be adjusted by a factor c, where

c =

√
1 +

3J2R2
E

8R2
orb

(1 + 3 cos(2i))

=⇒ ω = ωcη̂. (3.8)

The main long term effect of J2 is nodal precession, where the longitude of the
ascending node Ω drifts over time. Hence we must correct this through adjusting the
reference orbit. The position of the reference orbit at a time t in the ECI frame is then
given by

rref = Rorb([cos Ω(t) cos θ(t)− sin Ω(t) sin θ(t) cos i(t)]x̂

+[sin Ω(t) cos θ(t)− cos Ω(t) sin θ(t) cos i(t)]ŷ

+[sin θ(t) sin i(t)]ẑ), (3.9)

where

i(t) = iref −
σ

k
sin iref σ =

(
3ωJ2R

2
E

2R2
orb

)
cos iref

Ω(t) = Ω0 − σt k = ωc+ σ cos iref

θ(t) = kt. (3.10)

One last correction was also applied: correcting the cross-track motion of the satellites
(η). This correction is made due to the averaging of the J2 gradient, which causes errors
in the period of the cross-track motion (Schweighart & Sedwick, 2002), and so correcting
this results in the differential equation

η̈ = −q2η + 2lq cos(qt+ φ), (3.11)

where q, l and φ are constants defined in Appendix A.3. Putting it all together gives us
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the final set of three coupled differential equations:

ρ̈ = 2ωcξ̇ + (5c2 − 2)ω2ρ− 3ω2J2
R2
E

Rorb

3 cos 2kt sin2 iref

4

ξ̈ = −2ωcρ̇− 3ω2J2
R2
E

Rorb
sin2 iref sin kt cos kt

η̈ = −q2η + 2lq cos(qt+ φ). (3.12)

The given solutions by Schweighart & Sedwick (2002) assume certain initial
conditions for t = 0. To generalise the equations, a set of solutions for arbitrary initial
conditions at t = t0 were created, requiring the following coefficients:

κ1 = β2ρ0 +
β

α
ξ̇0 − βζ(δ2 − 4) cos(2kt0)

κ2 = ξ0 −
β

α
ρ̇0 +

1

2
ζ(δ2 − 4)(γδ − 3β) sin(2kt0)

κ3 = −γρ0 −
β

α
ξ̇0 − ζ(4β − 3δ) cos(2kt0)

κ4 =
1

α
ρ̇0 + 2ζ(βδ − 3) sin(2kt0)

κ5 = ζ(βδ2 − 3δ)

κ6 =
ζδ

2
(3βδ − γδ2 − 4)

κ7 = η0

κ8 =
η̇0 − l sin(qt0 + φ)

q
, (3.13)

where α, β, γ, δ and ζ are constants also defined in Appendix A.3. With the substitution

κ3 = A1 cosϕ1 κ4 = A1 sinϕ1

κ7 = A2 cosϕ2 κ8 = A2 sinϕ2, (3.14)

the final equations for the position of a satellite at a time t, with initial conditions at a
time t = t0 are then

ρ(t) = κ1 +A1 cos(α(t− t0)− ϕ1) + κ5 cos(2kt)

ξ(t) = κ2 −
αγ

β
κ1(t− t0)− βA1 sin(α(t− t0)− ϕ1) + κ6 sin(2kt)

η(t) = A2 cos(q(t− t0)− ϕ2) + l(t− t0) sin(qt+ φ). (3.15)

It should be noted that when the initial conditions of Schweighart & Sedwick (2002)
are given, these equations reduce to those in the paper. Furthermore, setting the J2

parameter to zero reduces the equations to the HCW equations listed in Section 3.1. An
extended demonstration of this is found in Appendix A.3.

A diagram showing the deputy satellite positions with respect to the circular reference
orbit under the effect of J2 is shown in Fig. 3.3. Again, due to numerical errors from the
conversion between the ECI and curvilinear frames, the y axis scale was prevented from
enlarging further than 10µm. Note also that t0 was chosen to be at a time t0 = T/8,
where T is the period, so that the secular motion of the in-track (ξ) component is largely
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(a) i = 0°, Ω = 0°, α = 0°, δ = 90° (b) i = 90°, Ω = 90°, α = 0°, δ = 0°

(c) i = 90°, Ω = 90°, α = 0°, δ = 45°

Figure 3.3: J2 perturbed motion of the two deputy spacecraft with respect to the
reference orbit (n.b. not with respect to the chief), based on the work of Schweighart
& Sedwick (2002). Plotted over 10 orbits in the curvilinear LVLH frame for different
orbital configurations. Note that the initial conditions were set at t0 = T/8, where T is
the period, to remove in-track secular motion.
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removed and the periodic nature of the perturbation is viewable.
Under the J2 perturbation, we see that the equatorial orbit (Fig. 3.3a) is identical to

the non-perturbed equivalent up to numerical errors. However, large differences arise
in the polar orbit case, both when looking at a star perpendicular to the orbital plane
(Fig. 3.3b) and one at 45° from the orbital plane (Fig. 3.3c). The perturbation in this case
mainly works on the radial and in-track components of the motion, causing oscillatory
behaviour away from the reference orbit. The cross-track motion is largely unaffected,
replicating the behaviour of the non-perturbed version.

That being said, when compared against a high precision integration of the ECI
equations of motion (equation 3.6), the motions do not agree. A simple example of some
of the problems with these equations come from considering a polar orbit, looking at a
star perpendicular to the orbital plane (Fig. 3.3b). In this configuration, in the absence of
perturbations, the satellites should follow each other in single file around the orbit. Then,
when the perturbation is applied, we should expect that an oscillatory phase difference
should arise. This is because the chief and deputies are at different latitudes at a given
point in time, and so will feel a different magnitude of the J2 force. When analysing
equation 3.15 though, we see that this oscillatory motion will not occur. In the LVLH
frame, the only difference in initial conditions between any of the spacecraft in this
configuration is the initial in-track offset ξ0. However, none of the equations have a time
varying component including ξ0 as a parameter, and so the differential perturbation will
be zero for all t.

The fundamental reason for this is that Schweighart & Sedwick (2002), like most of
the literature on this topic, focus on long term motions of satellites rather than short term
sub-orbit motions. This mentality is clearly seen at the beginning of the paper where
the J2 gradient is averaged over a whole orbit, thus removing much of the short term
variation from the equations of motion. Furthermore, attempts at subtracting the average
and adding the un-averaged gradient were found to be insufficient in matching up with
the ECI integration. Hence, these equations are not suitable for our purposes in this
thesis, although for long term motions this solution based on the work of Schweighart &
Sedwick (2002) may still be very useful.

Rather than deriving a new set of LVLH equation of motion, we instead returned to
the ECI equations of motion (Equation 3.6) and integrated these equations directly with a
high level of precision due to the large distances involved with the ECI reference frame.
As a sanity check, the perturbed motions for a few simple orbit cases were calculated
and are shown in Fig. 3.4 and 3.5. These equations were numerically integrated with
SciPy’s Solve IVP function (Jones et al., 2001), using the Runge-Kutta method of order
5(4) developed by Dormand & Prince (1980). We adopted a relative error tolerance of
1× 10−12 due to the aforementioned large distances. The tolerance was chosen through a
short resolution study, which found that tolerances larger than this resulted in noticeable
numerical errors.

The LVLH frame plots (Fig. 3.4) show the differential separation between the deputies
and chief that is expected. In an equatorial orbit there is no differential motion, just a
constant in-track separation. The minute radial motion shown is an artefact of the fact
that the two satellites are not perfectly in a line due to the curvature of the Earth. The
polar orbit cases show that, indeed, a phase offset occurs causing oscillatory motion in the
radial direction due to the different latitudes of the satellites. The cross-track motion also
behaves as in the previous perturbed and non-perturbed cases. The long term motion of
the satellites is plotted in Fig. 3.4d, which shows that the radial separation will increase
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(a) i = 0°, Ω = 0°, α = 0°, δ = 90°
1 orbit

(b) i = 90°, Ω = 90°, α = 0°, δ = 0°
1 orbit

(c) i = 90°, Ω = 90°, α = 0°, δ = 45°
1 orbit

(d) i = 90°, Ω = 90°, α = 0°, δ = 45°
100 orbits

Figure 3.4: ECI integrated J2 perturbed motion of the two deputy spacecraft with respect
to the chief spacecraft. Integrated using a Runge-Kutta method of order 5(4) (Dormand &
Prince, 1980), with a relative error tolerance of 1× 10−12. Plotted in the curvilinear LVLH
frame for different orbital configurations.

over time if left unchecked, albeit only by a small amount.
Perhaps more importantly, the differential separation in the baseline frame plots (Fig.

3.5) shows the motion that must be corrected over an integration. We see that in all
orbits, the J2 perturbation rotates the baseline about ŝ a little on the order of a fraction
of a metre, shown by the motion in the ô direction. It should be noted that Fig 3.5a is
an exception, for which the ô motion is again an artefact of the satellites not being in
a line due to the curvature of the Earth. Regardless, this twisting is not important for
keeping the optical path length identical between the satellites during integration, and
so can be safely ignored. The baseline also appears to behave well, staying constant for
configurations with the star perpendicular to the orbital plane, and oscillatory with two
periods for other configurations (the baseline breathes in and out twice as the satellites
move up and down in the η̂ direction). The star (ŝ) direction is the most critical to analyse,
as it is in this direction that the primary unwanted motion is caused by J2 and we want
this separation to be zero. The perturbation causes an unwanted separation of 0.5 m for
the polar orbit case, looking at a star with 45° declination. This amount of motion should
be able to be removed through thrusting during an integration and will be explored in
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(a) i = 0°, Ω = 0°, α = 0°, δ = 90°
1 orbit

(b) i = 90°, Ω = 90°, α = 0°, δ = 0°
1 orbit

Baseline Frame

(c) i = 90°, Ω = 90°, α = 0°, δ = 45°
1 orbit

Baseline Frame

(d) i = 90°, Ω = 90°, α = 0°, δ = 45°
100 orbits

Figure 3.5: ECI integrated J2 perturbed motion of the two deputy spacecraft with respect
to the chief spacecraft. Integrated using a Runge-Kutta method of order 5(4) (Dormand
& Prince, 1980), with a relative error tolerance of 1× 10−12. Plotted in the baseline frame
for different orbital configurations.

Chapter 4. Overall, we see that the ECI integration method does indeed perform well as
long as a very high precision integrator is used.

3.3 Atmospheric drag

We will also do a brief order of magnitude calculation of aerodynamic drag, to determine
the effect that it will have on our array and to understand what manoeuvres may be
required to correct it. Aerodynamic drag is given by the drag equation (Montenbruck &
Gill, 2000):

adrag = −1

2

ρCA

m
|vrel|2v̂rel, (3.16)

where ρ is the density of the atmosphere, A is the cross-sectional area, vrel is the relative
velocity of the satellite with respect to the atmosphere, m is the mass of the satellite and
C is the drag coefficient.
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The relative velocity can be determined through the use of angular velocities:

|vrel| = |ω × r − ωE × r|, (3.17)

where ω is the angular velocity of the satellite and ωE is the angular velocity of the Earth.
Since ω >> ωE , we can approximate the relative angular velocity as the angular velocity
of the satellite itself. This corresponds to a linear relative velocity (at 500 km) of about
8 km/s.

From the CIRA Working Group (2012), we find that the atmospheric density at an
altitude of 500 km is 8 × 10−13 kgm−3. We will assume the deputy satellites are 3U
CubeSats, with a mass of 4 kg and a cross-sectional area of 0.03 m2. Since CubeSats are
roughly rectangular, the drag coefficient will be assumed to be about two (Moe et al.,
2013). This then gives an approximate acceleration due to drag of

adrag ≈ −3× 10−7v̂rel m/s2.

Since drag works against the motion of the satellite, it has the effect of slowing it
down. This decreases the energy of the satellite, and so it will lose altitude. Over the
long term, this is ideal as a satellite has to be able to deorbit within a time frame of 25
years (European Space Agency, 2015). Starting with the vis-viva law for circular orbits
(Montenbruck & Gill, 2000),

v2 =
µ

r
, (3.18)

and taking the time derivative gives

dr

dt
=
−2µ

v3

dv

dt
. (3.19)

We then want to calculate the characteristic time it will take for the array to drop
one scale height ∆r = H , where the scale height is the height at which the atmospheric
pressure drops by e. From CIRA Working Group (2012), we identify the scale height at
500 km to be approximately 70 km. The time taken to decend this distance is hence

∆t ≈ −v3

2µadrag
∆r

= 4.75 yr.

This shows that we should be able to both comfortably achieve our desired mission
length of three years, while also deorbiting long before the 25 year deadline.

We also must consider differential drag and the effect it will have on our array. Recall
that the optical path difference is the ultimate constraint we have, given by

D = |∆r1| −∆r1 · ŝ− |∆r2|+ ∆r2 · ŝ ≈ 0, (3.20)

where ∆r1 is the separation between the chief spacecraft and the first deputy, ∆r2

is similar for the second deputy and ŝ is the unit vector in the direction of the
star. Differential drag will work to change the separation lengths of each spacecraft,
shortening one and lengthening the other. To compensate this, instead of installing a
thruster to move in the baseline direction, we could change the separation in the star
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Δr

2Δr

Figure 3.6: Potential routine for correcting for drag. In the top panel, drag has caused
the chief to move a distance ∆r from the centre of the array. To correct for this, we
could boost the deputy with the longer separation up 2∆r in the direction of the star.
Essentially, compensating an increase in |∆r|with an increase in ∆r · ŝ, so that D is kept
close to 0 (see Equation 3.20).

direction and then angle the mirror on the deputy via an actuator. A diagram of this is
shown in Fig. 3.6.

We can take the approximation that the satellites are moving in the same direction, at
the same velocity, with the same drag coefficient. The only parameters that should really
affect differential drag are the mass of each spacecraft and their cross sectional area. The
chief spacecraft would likely have twice the mass of the deputies, but by a similar token
have twice the cross sectional area, rendering the differential drag to be zero. However,
with solar panels, we can make a worst case approximation that the chief and deputies
have the same area, meaning that the differential drag will be half that of the absolute
drag on a deputy, or about 1 × 10−7 ms−2. Over half an orbit (t = 2700 s), we then get a
displacement of

∆r =
1

2
at2

≈ 35 cm.

As the drag displacement shortens one path and lengthens the other (see Fig. 3.6), we
must compensate for twice the displacement to make the paths equal. Thus, to correct a
change in separation of this magnitude, we could thrust one of the deputies up by 70 cm.
Over a 300 m chief/deputy separation, this would correspond to an angular change of
0.1°, and so would remain in the field of view of the chief satellite. Adjusting for this
small angular change should also be achievable with an actuator attached to the mirror.
Further studies comparing this approach with the power and space constraints of an
additional thruster should be conducted in the future.



Chapter 4

Orbital Corrections and Constraints

In the previous chapter, we identified how the satellite array will be perturbed from its
original orbit due to the influence of the J2 geopotential term. What is more significant,
however, is how to correct these perturbations. In this chapter, we will describe three
categories of orbital corrections and identify the requirements needed to perform these
manoeuvres, specifically in terms of the ∆v budget. The first two detail the corrections
needed during a regular orbit: one during integration (i.e. when the star is being
observed) and the other correcting the orbit during the recharge phase (when the array is
on the daylight side of the Earth). The final type of orbital manoeuvre are those that are
required for when the target of interest or maximum baseline is changed.

4.1 The delta-v budget

In each correction, the most important parameter we will discuss is ∆v, which is the
change in velocity due to an impulsive manoeuvre (Curtis, 2014). This is related to the
amount of fuel required by the manoeuvre by the Tsiolkovsky (or ideal) rocket equation,

∆v = Ispg ln
m0

mf
, (4.1)

where Isp is the specific impulse of the thruster, g is the standard gravitational
acceleration, m0 is the wet mass (mass including propellant), and mf is the dry mass
(mass without propellant). This tells us something profound: for a given thruster, the
amount of ∆v required over the lifetime of the satellite array determines the amount
of fuel that is required (Pettit, 2012). Conversely, for a set amount of fuel, it also then
determines the amount of ∆v that can be used during the mission. This is a concept
known as the delta v budget - essentially, ∆v can be used as a stand in for the amount of
fuel required.

We can do a few approximations to identify the amount of ∆v that we have to work
with. Considering the Enpulsion Spacecraft Technology (2018) microthruster, we see
that for a 3U CubeSat at 5 kg (such as the deputies), a single thruster would provide
approximately ∆v ≈ 1.5 km/s in total over the lifetime of the thruster, and for a 10 kg
CubeSat (such as the chief), this would decrease to about 750 m/s. Having a single
thruster for each satellite would be ideal, due to cost, power and space requirements.
Assuming a mission length of three years and a period of 90 min (orbital altitude of
500 km), we find that, per orbit, we have a ∆v budget of ∼0.08 m/s for the deputies
and ∼0.04 m/s for the chief.
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4.2 Correcting during integration

Firstly, we will consider correcting the perturbations during the period of integration
- when the array is looking at the star. This is for approximately the first half of the
orbit, while the array is on the nighttime side of the Earth. During this time the optical
path difference needs to be kept within 5 cm as detailed in Chapter 1. This is the main
requirement, and so we will only focus on correcting the components of the optical
path difference rather than the total position and velocity. Recall that the optical path
difference is given as

D = |∆r1| −∆r1 · ŝ− |∆r2|+ ∆r2 · ŝ ≈ 0. (4.2)

where ∆rj is the separation between the chief and deputy j. The path difference can be
split into two components: the baseline separation and the star separation. The baseline
separation is given by:

∆b = |∆r1| − |∆r2|. (4.3)

We also calculate the component of the separation in the star’s direction, ∆sj :

∆s1 = ∆r1 · ŝ ∆s2 = ∆r2 · ŝ. (4.4)

If we take the time series of these values over the course of an orbit, we can also
calculate the maximum acceleration they cause, as well as the ∆v required to counteract
them. This is calculated for a separation ∆x below:

max(ax) = max(|∆̈x|)

∆vx =

∫
|∆̈x|, (4.5)

where ∆̈x can be found by taking the numerical gradient of the time series twice.

The above way that ∆v is calculated assumes that the thrust direction can be in any
direction, but under the baseline thruster configuration, all three satellites can only thrust
upwards in the ŝ direction. Despite this, we can still make an approximation that should
give us an upper bound on the required ∆v. Considering the ŝ direction, if the separation
is negative then the satellite must thrust in a positive direction. On the other hand, if the
satellite has a positive separation, then rather than thrusting negatively, we can force the
other two satellites to thrust positively. Hence, the deputies will thrust at most 2∆vs:
once for their own positive thrusts and once for the other deputy’s negative thrusts.
Conversely, the chief will only require one of these thrusts - the perturbations on the
two deputies should be symmetrical about the chief, and so the combined “negative”
thrusts of the deputies should equal ∆vs.

For the baseline direction, as we discussed in Section 3.3 we can compensate a change
in the baseline direction with a shift in the ŝ direction. Again, we cannot disentangle
which of the deputies has a longer baseline at a given point, so as another approximation
we will take a worst case scenario and add the ∆v in this direction to both of the deputies.
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Table 4.1: Table of the maximum ∆v required to correct for the J2 perturbation over
half an orbit for various orbital configurations. Taken at an altitude of 500 km with a
maximum chief/deputy separation of |∆rmax| = 300 m.

Inclination
(i) [°]

Longitude of the
ascending node

(Ω) [°]

Right Ascension
(α) [°]

Declination
(δ) [°]

Max Acceleration
[×10−6 m/s2]

∆v
[×10−3 m/s]

Percentage of
∆v budget

Chief Deputy Chief Deputy Chief Deputy

0 0 0 90 0.00 0.00 0.00 0.00 0.00 0.00
90 90 0 0 0.00 0.00 0.00 0.00 0.00 0.00
90 90 0 45 0.95 1.91 1.38 2.79 3.46 3.49
45 0 90 20 1.28 2.60 2.10 4.23 5.24 5.29
80 0 80 20 0.97 1.96 1.70 3.41 4.24 4.26

Therefore we have that the maximum ∆v for all three satellites is

∆v1 < 2∆vs + ∆vb

∆v2 < 2∆vs + ∆vb

∆vc < ∆vs. (4.6)

It should be noted that the ∆vb component will be nearly negligible as J2 primarily
acts on the array as a whole: the zeroth order term is a translation of the whole array,
and the first order term is a rotation of the array due to the gradient of J2. This is what
gives rise to the ∆vs component. The baseline component is an asymmetric stretching
of the array, which is only influenced by the much higher order tensor terms of the J2

perturbation.
The time series of the various separations for various orbital parameters were taken,

and the ∆v calculated for each one. Here, we’ve assumed an altitude of 500 km and a
maximum chief/deputy separation of 300 m. The results are given in Table 4.1. We see
that over half an orbit, even in the worst case scenario, we use around 5% of the orbital ∆v

budget. This is good as it highlights that with a proper control system, even though we
have limited ourselves to thrusting in a single direction, we should be able to counteract
the perturbation comfortably. To identify the exact ∆v required for these orbits using
finite thrusts will require a detailed control simulation. This is a priority for future work,
as it will also identify the optical path delay residuals that require correction.

We can also do a rough estimate of the ∆v required to correct atmospheric drag as
explained in Section 3.3. Recall that one deputy was required to thrust 70 cm over half an
orbit. This corresponds to a ∆v of approximately 0.3 mm/s, or equivalently 0.3% of the
budget; a tiny fraction that again highlights that J2 is the most important perturbation to
consider.

4.3 Correcting the rest of the orbit

4.3.1 One orbit

We also need to identify the ∆v required to correct the other half of the orbit and get the
array back into position. Though we do not have the optical path constraint as before due
to the fact we are not taking measurements, we have a secondary constraint in that we
must have ample time to charge the array’s batteries. Hence, we need to limit the time
that the satellites are active and allow the array to passively charge for a majority of the
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Table 4.2: Table of the ∆v required to correct the recharge portion of the orbit for various
orbital configurations. Taken at an altitude of 500 km with a maximum chief/deputy
separation of |∆rmax| = 300 m.

Inclination
(i) [°]

Longitude of the
ascending node

(Ω) [°]

Right Ascension
(α) [°]

Declination
(δ) [°]

∆v
[×10−3 m/s]

Percentage of
∆v budget

0 0 0 90 0.00 0.00
90 90 0 0 0.01 0.01
90 90 0 45 0.86 1.07
45 0 90 20 2.58 3.23
80 0 80 20 0.81 1.01

orbit.
One way to do this is to limit the number of thrusts, but optimise them so that they

take the spacecraft as close to the beginning of the orbit as possible. Considering that
a thrust is three parameters (three velocity components) and that the end state is six
parameters, the minimum number of thrusts we need is two. We will conduct one thrust
at 10 minutes after finishing the integration, to allow the array to passively charge for a
short period of time. The second thrust will be 10 minutes before restarting integration; a
balance between giving enough time for attitude correction and recharging the batteries.
These thrusts can be in any direction as we can change where each spacecraft is pointing
during this portion of the orbit.

The desired end state of the satellites will not be the initial configuration, as the chief
satellite will be perturbed considerably and would require a large amount of thrust to
return to the exact same position. As we are only concerned with the relative position of
the deputies with respect to the chief, we can safely ignore the absolute position of the
chief and allow it to propagate unchecked.

Mathematically, if the chief satellite has an end position rc and velocity vc, then the
angular momentum unit vector of the chief is

ĥ =
rc × vc
|rc × vc|

. (4.7)

Using this, we can go through the calculations detailed in Section 2.3 to determine the
rotations that will convert from the chief’s position and velocity into the deputies’. These
deputy states are thus the positions and velocities we will aim to arrive at after the
remaining half an orbit.

Let us consider that after two thrusts, deputy j has final state vector Xf j =

[rbj , roj , rsj , ṙbj , ṙoj , ṙsj ] in the baseline frame. Let us then say that the desired end state
vector is Yf j . The residuals are then:

∆Xf j = Xf j − Yf j . (4.8)

Since we have six unknowns per deputy satellite, and the end state has six parameters,
we can explicitly solve for the thrusts such that the residuals are zero: ∆Xf j = 0. This
was done using SciPy’s root function, in particular the hybrid Powell method (Jones
et al. (2001); More et al. (1980)).

The initial positions of the spacecraft were chosen to be the end positions after half an
orbit had been completed; that is, at the end of the orbit described in the previous section.
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To account for the fact that the orbit will have been corrected in some directions during
integration, the separation in the star direction was forced to be 0. The combined ∆v

over the second half of the orbit, using two thrusts to correct for perturbations, is given
in Table 4.2 for a number of orbital configurations. Again, we have assumed an altitude of
500 km with a maximum chief/deputy separation of |∆rmax| = 300 m. We immediately
see that this does not use up much ∆v - it is less than half of the required amount during
the integration half of the orbit. Furthermore, we should note that this is a maximum.
We are able to relax some of the constraints on the root finder and convert the problem
into an optimisation one, where we optimise over the residuals and the ∆v vector. In this
way, we can further decrease the ∆v usage by constraining ∆s1 = ∆s2 = ∆b = 0 while
relaxing the other dimensions. Alternatively, we could choose different thrust times that
may allow for a further reduction in ∆v.

4.3.2 Multiple orbits

Now, we can then string together these two processes: correcting during integration and
finding the ideal two thrusts in the second half of the orbit that will take the array back
to the starting position. This is useful to see whether the amount of thrust needed will
increase over subsequent orbits.

Interestingly, we found that the ∆v usage increased slightly per orbit over the course
of ten orbits, albeit only by a small amount: less than 0.5% per orbit. This is smaller
than other perturbations that are not being considered at this stage and hence will be
disregarded in this feasibility study. We believe that this is likely due to a numerical error
in the simulation, and subsequent, more comprehensive simulations will need to remove
this drift in ∆v.

4.4 Reconfiguring the orbit

We turn to the problem of how much ∆v is required to change baselines or targets for
the satellite system. This comes in two components: the change in the orbital plane of
the spacecraft and the change in phase. This discussion will only consider baseline/star
vector changes, and not changes in the chief’s orbit. For that reason, we only need to
consider the effect on the deputy spacecraft.

Consider two different spacecraft configurations, denoted with subscripts α and β.
Our aim is to find the ∆v required to change from configuration α to β. We first need
to find a point where the two orbits intersect. More specifically, we want the point on
the orbit that lies on the intersection of the two orbital planes. This is because at the
point where they intersect, we can thrust in a certain direction to immediately change the
plane. Since the angular momentum vector is perpendicular to the plane of the orbit, the
cross product of the angular momentum vectors of each orbit will give us a vector along
this intersection:

r = hα × hβ. (4.9)

Of course, we only have the angular momentum vector of the chief orbit. Hence, to get
the angular momentum vectors of the deputies, we simply rotate the chief hc vector by
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the associated deputy’s quaternion (qd, see Section 2.3):

hdj = Q(hc, qdj), (4.10)

where j represents the configuration α or β. Thus, we find the point of intersection is

rd =
hdα × hdβ
|hdα × hdβ|

·Rorb. (4.11)

We now want to find the time in each of the two configurations that the deputy
reaches this intersection point. Firstly, let’s take this intersection position (rd) and find
the location of the chief at this given moment:

rcj = Q(rd, q
−1
dj ). (4.12)

Then, let’s rotate the chief orbit onto the x̂− ŷ plane, by performing the reverse rotation
that was done in determining the orbit:

r′cj = Q(rcj , q
−1
c ). (4.13)

We can easily work out the exact phase (angle) that this point corresponds to in the orbit:

φ = arctan 2(r′cjx, r
′
cjy). (4.14)

Knowing the angular velocity of the orbit, ω, we can work out the time taken to reach
that point:

t =
φ

ω
. (4.15)

Putting it all together gives

tdj =
arctan 2(Q(rd, q

−1
c q

−1
dj )x,Q(rd, q

−1
c q

−1
dj )y)

ω
, (4.16)

where d is the deputy number and j is the greek letter associated with the configuration.

With that, we can now calculate the ∆v requirements. First, for the plane change, we
can calculate this value directly. That is, propagate each deputy along each of the orbits
for the amount of time calculated above, and retrieve the velocity at that time:

vdα = vt=tdα vdβ = vt=tdβ . (4.17)

The ∆v requirement is simply the magnitude in the difference of the velocities for each
orbit:

∆vd,inc = |vdα − vdβ|. (4.18)

The phase requirement is more complicated, as it requires what is known as a phasing
manoeuvre. This is defined as a transfer to and from its own orbit, using a change in
radius (and hence period) that allows it to adjust for the time requirement (Curtis, 2014).
We will start by considering a phase change over a single orbit. First, we need to work
out the period for the new orbit. This is the old period, plus the extra/lesser time we
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Table 4.3: ∆v required to change the target or baseline for various declinations and orbital
modifications. The change in configuration refers to either looking at a star with an α/δ
that is offset from the original target by a few degrees, or a shortening/lengthening of
the baseline. Taken at an altitude of 500 km, with i,Ω = 0°, initial α = 0° and default
maximum baseline |∆bmax| = 600 m.

Initial
Declination (δ) [°]

Change in
Configuration

∆v Plane
[×10−3 m/s]

∆v Phase
[×10−3 m/s]

∆v Total
[×10−3 m/s]

0 ∆δ = 1° 0.05 0.62 0.67
0 ∆α = 1° 5.80 0.00 5.80
90 ∆δ = 1° 5.80 0.00 5.80
90 ∆α = 1° 0.00 0.00 0.00
45 ∆δ = 1° 4.14 0.44 4.58
45 ∆α = 1° 4.10 0.00 4.10
45 ∆δ = 1°, ∆α = 1° 5.80 0.44 6.24
45 ∆δ = 2° 8.34 0.86 9.20
45 ∆α = 2° 8.20 0.00 8.20
45 ∆δ = 2°, ∆α = 2° 11.6 0.86 12.4
45 0.5×|∆bmax| = 300 m 118 12.5 130

have due to the phase difference. In other words:

T ′d = Td + (tdβ − tdα). (4.19)

We can just use Td, as the periods of the two different configurations should be the same.
Now, we can calculate the semi major axis of this transfer orbit using

a′d =

(
µ

(
T ′d
2π

)2
) 1

3

, (4.20)

where µ is the Earth’s standard gravitational parameter. The velocity can be calculated
using the vis-viva equation (Montenbruck & Gill, 2000):

v′d =

√
µ

(
2

Rorb
− 1

a′d

)
. (4.21)

The ∆v is simply twice the difference between this velocity and the original speed - once
for transferring into the phasing orbit, and once for returning to the original orbit:

∆vd,phase = 2(v′d − vd)

= 2

(√
µ

(
2

Rorb
− 1

a′d

)
−
√

µ

Rorb

)
. (4.22)

This is a maximum bound for the ∆v phase requirement, as instead of phasing in a
single orbit, we can spend multiple orbits to correct for the same requirement. For N
orbits, that means we want T ′d = Td +

(tdβ−tdα)
N ; for more orbits we require a smaller

period change and hence a smaller ∆v. Putting it together gives the total ∆v for a given
deputy d changing between two configurations:

∆vd = ∆vd,inc + ∆vd,phase. (4.23)

Table 4.3 shows the ∆v required for a variety of star vector changes. It should be
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noted that this reconfiguration calculation is agnostic of the Earth’s axis, and so the orbital
parameters i,Ω are degenerate with α, δ. Hence, both were set to zero. Similarly, the
starting right ascension of a star will not affect how much ∆v is required to change the
configuration and so this was also set to zero in the table. Finally, the altitude of the array
was set at 500 km and the maximum baseline separation (|∆bmax| = 2|∆rmax|) was set
to 600 m. As we can see, generally the ∆v is quite small to change the orientation of the
spacecraft by a few degrees: only about 1×10−3 m/s or so. Furthermore, we see changing
α does not require a phasing manoeuvre, and that changing α and δ at the same time is
cheaper than doing both separately.

We can also calculate the maximum ∆v for a plane change given a maximum baseline
of 600 m. From Curtis (2014), the ∆v required for an orbital plane change of angle θ is:

∆v(θ) = 2v sin
θ

2
, (4.24)

where v is the velocity of the spacecraft. For an altitude of 500 km, recall this is roughly
8 km/s. The maximum angular change of the array is simply θ = |∆bmax|

Rorb
= 8.72 × 10−5

radians. This gives a maximum ∆v of 0.68 m/s, which while substantial, is the absolute
maximum a reconfiguration would require (looking at a star on the complete opposite
end of the sky). This is the equivalent of 10 orbits worth of the ∆v budget, and so overall
we can conclude that the thrust required to change between stars, given they are roughly
in the same area on the sky, is minimal.

One final change was included in Table 4.3: that of changing the maximum baseline
(∆bmax). As we can see, halving the baseline to 300 m results in a large ∆v of 0.13 m/s.
Hence, the maximum baseline should not be varied much unless necessary.

4.5 Summary

Adding these three corrections together gives us the total amount of ∆v required. A
summary of this is found in Fig. 4.1, showing the three corrections and the amount of
∆v required by a deputy satellite to correct for perturbations over the course of a year.
This was calculated using the maximum ∆v required for the integration and recharging
halves of an orbit (using Tables 4.1, 4.2) and multiplying by the number of orbits in a year.
Assuming a 500 km orbit with a period of 90 min, this results in 5840 orbits per year. To
factor in reconfiguration, we also assumed that a correction of ∼ 5° was made per day.
This is a rough estimate that should allow us to both change targets, as well as correct for
the positioning of the star, where the star will move slightly with respect to the orbit due
to the Earth’s rotation around the Sun.

Overall, we find that the deputy satellites will use roughly 50 m/s per year, which is
10% of the yearly ∆v budget that a single thruster would provide (500 m/s/yr). This is
a very useful result, showing that the one thruster model should be sufficient and that
we have a large amount of headroom for other thrust requirements, such as the control
system and emergency manoeuvres.
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Observation/
Integration:
Δvdeputy < 25 m/s/yr  

Orbital correction/
Recharging:
Δvdeputy < 15 m/s/yr  

Begin 
Integration

End 
Integration

Thrust #2

Thrust #1

Total: Δvdeputy < 50 m/s/yr
Budget: Δvdeputy ~ 500 m/s/yr

Percentage of 
budget used:     

Reconfiguration
(~5° per day):
Δvdeputy ~ 10 m/s/yr  ~ 10%

Figure 4.1: Summary of the ∆v required by a deputy satellite to correct for orbital
perturbations over a year.



Chapter 5

Observability of the Satellite Array

A key part of this mission simulation is how much of the sky is observable over a given
year of observations and how the various orbital parameters affect this coverage. In this
chapter, we will determine whether an object is observable. Then, we will delve into how
much the satellite can see in a given amount of time, both in terms of sky observability
(if a star is viewable), as well as the interferometric UV plane coverage.

5.1 Is it observable?

There are two main factors in identifying whether a star is observable:

1. Is the telescope pointing sufficiently far enough away from the Sun?

2. Is the Earth obscuring the star?

For a star to be observable, we must address both criteria. There is a potential third
criteria, in whether light from the Earth will interfere with the light path between the
spacecraft. However, for our orbital configuration this will not be an issue as the
array should always be tangential to the surface of the Earth. Here, Ireland (2019,
personal communication) also notes that the reflected light from the Moon is generally
not important as long as we restrict science targets to a magnitude of∼ mV < 15. Finally,
we don’t consider occultations by the moon, as they are generally short and only block a
small area of the sky (∼ 0.5°). We will now tackle each of the two main criteria in turn.

5.1.1 The Sun

For the spacecraft to see an object, it must be within some angle of the antisolar
(opposition) axis, γ. This is so that the satellite array avoids both pointing at the sun, and
having the baseline point towards the sun where the sun can interfere with the scientific
measurements. A schematic of this is in Fig. 5.1. We want to have a wide angle in order
to see as much of the sky as possible. However, for our spacecraft, we note that γ = 60°
antisolar is the upper limit for how wide we can go with deployable baffling.

The antisolar axis can be found by simply finding the position vector of the Earth with
respect to the Sun. This approximation is valid as 1 AU is much larger than the orbital
radius, Rorb. We will define t = 0 such that the spacecraft is on the other end of the Earth
from the Sun - that is, the Sun is in the -x̂ direction in the Earth-centred inertial (ECI)
frame. This is shown in the diagram in Fig. 5.2.

Since we know the angular velocity of the Earth around the Sun (ω⊕), we can calculate
the position of the Earth at a given time. The Earth is tilted; a phenomena known as

48
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γ=40°

γ=60°

Figure 5.1: Schematic of keeping the satellite array within 40/60° of the antisolar axis.
Note that the solar panels can be used to baffle the sun, even for high antisolar angles γ,
by folding them inwards slightly.

the obliquity of the ecliptic where ε = 23.4°. Since the ECI frame has the fundamental
x̂− ŷ plane along the equator, we need to include the obliquity in calculating the Earth’s
position. Using trigonometry, we find the conversion between ecliptic coordinates (plane
of the Earth’s orbit around the Sun) to equatorial coordinates (same orientation as the
ECI frame, but centred on the Sun) to be (from Seidelmann et al. (1992))

requatorial =

1 0 0

0 cos(ε) − sin(ε)

0 sin(ε) cos(ε)

 recliptic

= Rεrecliptic. (5.1)

Here, the ecliptic coordinate system has the fundamental x̂ − ŷ plane aligned with the
ecliptic, and the x direction aligned with the vernal equinox (�). Using this, we can now
calculate the Earth’s position with respect to the Sun in the equatorial coordinate system,
approximating the Earth’s orbit as circular:

ω⊕ =
2π

365 · 24 · 60 · 60
≈ 2.0× 10−7 Hz

r⊕ = Rε

cos(ω⊕t)

sin(ω⊕t)

0


= [cos(ω⊕t), sin(ω⊕t) cos(ε), sin(ω⊕t) sin(ε)]. (5.2)

Then, the check to determine whether the object is viewable within an antisolar angle γ
is simply

cos−1(ŝ · r⊕) < γ. (5.3)
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Figure 5.2: Comparing the Ecliptic and Earth-centred inertial (ECI) coordinate frames.
The x̂ axis aligns with the vernal equinox (�).

5.1.2 The Earth

For the Earth’s contribution, we simply want to know if the Earth is blocking each
satellite’s view of the target. First, consider the position of one of the deputy satellites,
rd. The deputy can be in one of two states: either the Earth is in between the star and
the satellite, or the Earth is behind the satellite with the satellite facing the star. If it is
in the latter state, then the solution is trivial: the star is viewable. The situations can be
distinguished by taking the dot product of the position vector with the star vector and
checking if it is positive:

Star is viewable if ŝ · rd > 0. (5.4)

If the dot product is negative, then we have to check more thoroughly. Specifically,
we must check that the component of the satellite’s position vector perpendicular to ŝ is
outside the radius of the Earth (RE). This component is simply the vector rejection of the
satellite’s position vector with respect to the star, and so the test can be written as

|rd − (rd · ŝ)ŝ| < RE . (5.5)

To account for the fact that the Earth emits light which could be optically scattered
into our field of view, we need to increase the radius of the Earth by some amount.
Concerning the following derivation, refer to Fig. 5.3. For a spacecraft with orbital radius
Rorb, the baseline vector will be a certain angle away from the radius of the Earth. We
will call this angle θ, which is given by

θ = cos−1

(
RE
Rorb

)
. (5.6)
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Rorb

RE

l2

l1

θ θ/3

θ

Figure 5.3: Extending the radius of the Earth due to optically scattered light.

We will try and baffle as much of the light that is being emitted in this angle, but we will
suppose that the inner θ/3 is too bright to fully block out. Hence the radius of the Earth
is essentially extended by θ/3. Calculating this extension in terms of linear distance:

l21 = R2
orb −R

2
E

l2 = l1 tan

(
θ

3

)

⇒ l2 =
√
R2

orb −R
2
E tan

cos−1
(
RE
Rorb

)
3

 , (5.7)

and so the total effective radius of the Earth is

Reff = RE +
√
R2

orb −R
2
E tan

cos−1
(
RE
Rorb

)
3

 . (5.8)

The final test is hence

|rd − (rd · ŝ)ŝ| < Reff. (5.9)

For a 500 km orbit, the radius is extended by 333 m, leading to an effective equatorial
radius of 6378.4 km.

5.2 Satellite sky coverage

With the separate observability criteria determined, the next step is to simulate a year’s
worth of orbits to identify what parts of the sky are visible for a set of given parameters
and during what part of the year. We have a few parameters that we can modify to
determine how extensive the sky coverage is for our mission. These include the antisolar
angle γ, the chief orbit’s parameters (i, Ω) and the radius of the orbit Rorb. Of these, the
radius does not require much study: a larger orbital radius will reduce the amount of
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time the Earth is blocking any stars. The other three parameters (γ, i, and Ω) are more
complex and hence their parameter spaces need to be explored.

Another parameter that has not been discussed that must also be considered is
integration time. It is fine to say that a target is viewable at any instantaneous moment
in time. However, to take measurements we need to integrate the light from the star for
an extended period of time without any obstruction. Thus we also need to factor in how
long our spacecraft needs to view a star unobstructed. For our tests below, we assume
this to be about 45 min - half an orbit at 500 km. This is approximately the maximum time
we can expect to integrate for, as the other half of the orbit should be spent recharging
the power (as we are in the daylight half of the orbit).

Lastly, the nodal precession of the orbit needs to be considered. The cause of the
precession was discussed earlier, with the J2 perturbation in section 3.2, but we need
to explicitly mention this here as the precession may potentially allow us to view many
more stars over the course of a year. The precession rate for a circular orbit is directly tied
to the inclination of the orbit as we have seen before (recall Equation 3.10):

dΩ

dt
= −σ = −

(
3ωJ2R

2
E

2R2
orb

)
cos i, (5.10)

where J2 is the coefficient of the first zonal term of the Earth’s gravitational field, µ is the
gravitational parameter for the Earth and i is the inclination. We can also rearrange this
to calculate the inclination required for a given precession rate:

i = cos−1

(
−2

3

dΩ
dt R

2
orb

ωJ2R2
E

)
. (5.11)

To obtain a stable coverage over a year, we should put the satellite array in
a heliosynchronous orbit - an orbit that precesses 360° over the course of a year.
Substituting this into Equation 5.11 gives us a required chief inclination of i = 97.37°,
which is a very common orbital configuration for Low Earth Orbit satellites. The other
main inclination to consider is 39°. This is the lowest inclination that the rocket company
Rocket Lab can achieve (Rocket Lab, 2019), therefore representing the inclination of the
highest launch mass. As the Advanced Instrumentation and Tecnology Centre (AITC)
where the satellite array will be assembled is close to New Zealand, this is the least
expensive custom launch option. We therefore have two inclinations to consider. We
also have two antisolar angles - the ambitious γ = 60° discussed earlier and a more
conservative γ = 40°.

To start investigating how changing these parameters affect what portion of the sky
is observable, a colour plot of star declination (δ) against time was made (Fig. 5.4). The
proportion of an orbit that a given declination is observable was plotted on the colour
axis, where brighter areas represent a larger percentage of observability. This slice of
declinations was plotted over the course of a year (∼5500 orbits) and all other orbital
parameters were varied, including inclination (i), orbital longitude (Ω), right ascension
(α) and the antisolar angle (γ). An altitude of 500 km is assumed, as well as a maximum
separation between the chief and deputy of |∆rmax| = 300 m.

In Fig. 5.4a and 5.4b, the antisolar angle was set to 180°. This means that the Sun
will not be contributing to whether a star is observable, allowing us to see the effects of
varying inclination more easily. All the plots, except when explicitly varied, have Ω = 90°
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(a) (b)

(c) (d)

(e)
(f)

Figure 5.4: Satellite sky coverage of the satellite array, demonstrating the observability of
a slice of declinations over the course of a year for different orbital parameters (see main
text).
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and α = 180°. It is very apparent that inclination affects when certain portions of the sky
are 100% viewable during an orbit, with a heliosynchronous orbit having larger 100%
observable time periods but fewer in number than the 39° orbit. This makes sense when
precession is considered - the heliosynchronous orbit will precess once per year, and so
we see a single period of this precession in the plot. The 39° orbit on the other hand
has a period six times larger, which is due to the cos(i) dependence on the precession
rate. We see these six periods in the plot, showing that a flatter orbit will allow for more
times when a given star is maximally viewable for the whole orbit, but the length of those
periods will be shorter.

Another feature of interest is the height change of these spots of 100% observability,
which can also be accounted for in the change in inclination. The stars which will be
100% observable will be perpendicular to the orbital plane of the orbit, as the Earth will
not be blocking the light from the star. Hence for a heliosynchronous orbit, these stars
will be at a declination of 7°, while the 39° orbit has these stars at 51°.

Fig. 5.4c is identical to Fig. 5.4a, except that the Sun has been added with an antisolar
angle of γ = 60°. All of the following plots are based on the heliosynchronous orbit.
We can see that adding the sun removes most of the observability for the sky, as we
are restricted to a window of size ∝ γ2 deg2. Making the angle even smaller (40° as in
Fig. 5.4d), further decreases the window of observable stars. It is noticeable in this plot
that this “window” of observable stars is on an angle. This angle is approximately 23°,
highlighting that this tilt is due to the obliquity of the ecliptic. When the array is changed
to look at a star with α = 90° (Fig. 5.4e), this obliquity disappears due to the fact that the
window for which this star is maximally observable is during the Northern Hemisphere’s
summer solstice. At this time, Earth’s tilt axis is facing away from the Sun, preventing
any angular features from showing. It should be noted that changing the right ascension
of the star changes both the window of observability with respect to the Sun, and also the
spots of maximum observability due to the fact that the array must precess a different
amount for the star to be perpendicular to the orbital plane.

Changing Ω in a heliosynchonous orbit changes the time of day at which the array
passes over the equator. There are two special cases to examine here: a noon-midnight
orbit (where the array passes over the equator during noon/midnight) and a dawn-dusk
orbit (where the array passes the equator during dawn/dusk). A dawn-dusk orbit, where
the array rides the Earth’s terminator between day and night, is ideal for our array as it
means we can always point the array towards the night side of the Earth at any point
in the orbit. We see this difference in Fig. 5.4f, which shows a noon-midnight orbit
compared to the dawn-dusk orbit in Fig. 5.4c. The dawn-dusk orbit allows us to see some
stars 100% of the time (when the star is perpendicular to the orbit), but the noon-midnight
orbit will not as the stars perpendicular to the orbit are outside the acceptable antisolar
angle.

To see the averaged effect of changing these parameters over the course of a year,
a few maps of the sky were created. These maps, shown in Fig. 5.5, demonstrate the
average yearly observability for a grid of right ascension and declination. Fig. 5.5a and
5.5b compare the difference in inclination between the heliosynchronous and 39°orbit. As
we can see, the general shape is the same, though the heliosynchronous orbit has a bright
stripe centred on 7° and the 39° orbit has some patches around 51°. These represent the
100% observability patches found in Fig. 5.4. Changing Ω for the heliosynchonous orbit
case in plot 5.5c removes this bright stripe, as the orbit no longer has periods where a
given star is 100% observable. Interestingly, the heliosynchronous orbit plot indicates



§5.2 Satellite sky coverage 55

(a) (b)

(c) (d)

Figure 5.5: Map of the satellite sky coverage of different parts of the sky, as a percentage
observable over a year. The orbital parameters are varied for each of the subfigures.

(a) (b)

Figure 5.6: Map of the satellite sky coverage of different parts of the sky, as a percentage
observable over a year, shown in ecliptic coordinates.
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that the observability in the bright patch area is better over the course of a year than for
the lower inclination orbit.

Finally, and most interesting of all, is the effect of lowering the antisolar angle in Fig.
5.5d. As expected, the locations where a star cannot be viewed at all increases due to the
sun blocking more area. However, even in the observable areas the overall percentage of
observability decreases. This is because the smaller window at a given time will lead to a
lower percentage when averaged over a year. Ultimately, this tells us that the most critical
component with regards to observability is the antisolar angle - we need to maximise this
as much as possible through baffling the satellites and other means.

By transforming Fig. 5.5 from equatorial coordinates to ecliptic latitude and longitude
(λ, β), we can see the constraints on where the scientific targets have to lie. These are
shown in Fig. 5.6. Here, it is obvious that fundamentally the antisolar angle restricts the
ecliptic latitude of the potential science targets. That is, for γ = 60° , the targets need to
be within β = ±60° .

Even with the smaller antisolar angle, there are some very appealing targets that
lie within 40° of the ecliptic (listed in Table 5.1), such as the ρ Ophiuchus and Taurus
star forming regions that could be used to analyse stars in the process of formation.
Other objects include the microquasar SS 433, a black hole of a few solar masses located
inside a supernova remnant and exhibiting bright emission in the radio, optical and
X-ray (Margon, 1984). 3C 273 is also a potential target, which was the first quasar ever
discovered (Schmidt, 1963) and is the optically brightest in the sky. All of these have a
magnitude of V < 15. In addition to these, there are likely many more targets for which
a space interferometer, even one as small as this one, could provide critical scientific
observations.

Table 5.1: List of potential interesting targets within 40° ecliptic latitude

Object Name
Ecliptic Longitude

λ [°]
Ecliptic Latitude

β [°]
V Magnitude Description

SS 433 290 +27 13.0 Microquasar
3C 273 185 +05 14.8 Optically brightest quasar

Rho Ophiuchus 248 -02 – Nearest star forming region
Taurus Molecular

Cloud
72 +04 –

Nearest large star
forming region

5.3 Filling the UV plane

As we are using an interferometer, observability is not the only criteria to consider when
assessing the performance of the array. We also need to consider how much of the UV
plane the interferometer covers. The UV plane spans the possible baseline lengths and
position angles - the more of the plane that is sampled, the better the interferometer can
function as an imager.

The UV plane is usually defined as perpendicular to the source, with unit vectors û
being the North-South component and v̂ being the East-West component. These can be
easily calculated for a given star vector ŝ using

v̂ = ŝ× ẑ û = ŝ× v̂, (5.12)

where ẑ is the North axis of the Earth. During the simulation of an orbit, the baseline
vector at any given moment can be calculated by taking the difference of the two position
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Figure 5.7: UV plane coverage over a month for the satellite array in a 39° orbit with
Ω = 40°, α = 67° and δ = 25°. The antisolar angle was varied and plotted in different
colours: γ = 50 also includes γ = 40 points, and γ = 60 includes the points from γ = 40
and γ = 50. The maximum baseline is |∆bmax| = 600 m.

vectors of the deputies:

∆b(t) = r2(t)− r1(t). (5.13)

Then, we can decompose this vector into its û and v̂ components. The third component
in the ŝ direction should be zero due to the definition of the orbit. Of course, this is not
the case due to perturbations, but we will consider this in future simulations. Completing
this gives a number of points on the UV plane with coordinates

u(t) = ∆b(t) · û
v(t) = ∆b(t) · v̂. (5.14)

Due to symmetry, we can also include the negative of this point (−u(t),−v(t)). Hence,
for each baseline we can fill in two points on the UV plane.

Fig. 5.7 shows the UV coverage of an arbitrary star (α = 67°, δ = 25°) for the array
in a 39° inclination and Ω = 40° orbit, over the course of a month from the vernal
equinox. The maximum separation between the chief and deputy is |∆rmax| = 300 m,
corresponding to a maximum baseline of |∆bmax| = 600 m. The antisolar angle was
varied between 40 and 60° and is plotted in different colours.

The first thing of note is that this small interferometer has phenomenal UV coverage
if the antisolar angle is large enough. The precession of the orbit, along with the fact
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that the deputy spacecraft move with respect to each other constantly means that we
can achieve a large variety of baseline lengths, along with position angles. As can also
be seen, increasing the antisolar angle dramatically increases the UV coverage of the
interferometer, and so again, this angle should be made as large as possible.



Chapter 6

Conclusion and Future Work

In order to analyse exoplanet formation and atmospheres, we require instruments with
extremely high resolution and sensitivity; a level at which current instruments fall
short. Seemingly, the only future types of instruments that will satisfy both of these
requirements is an interferometer located in space, which brings a whole host of technical
challenges. Missions from large organisations such as TPF-I from NASA and Darwin from
ESA were cancelled, leaving a technological gap that has remained since the mid 2000s.

Throughout this thesis we have developed and tested the feasibility of a small scale
space-interferometry mission, named the Astrophysical Space-interferometry Pathfinder
(ASP), that aims to restart developments in the field of space interferometry. The design
of this mission is ambitious: two 3U CubeSats that act as telescopes, and one 6U beam
combiner CubeSat located between them. With such a space constraint, and to reduce
cost, a single thruster for each satellite would be ideal. The main purpose of this thesis
was to identify whether such a design would be feasible.

We attempted to modify a set of equations of motion that accounted for the J2

perturbation (the oblateness of the Earth) in the local vertical, local horizontal (LVLH)
frame, developed by Schweighart & Sedwick (2002). This was found to be fruitless as
the sub-orbit motion was lost due to the averaging of the J2 gradient over an orbit.
Despite attempts to re-introduce this gradient, we were not able to effectively use the
LVLH equations of motion. Hence, we simply integrated the equations of motion in
the Earth-centred inertial (ECI) frame, dealing with the small numerical errors that are
present with this approach.

We also briefly considered the effect of atmospheric drag, and calculated that it would
cause a displacement along the baseline of the interferometer of 35 cm over the course of
half an orbit. From the thruster constraint, this could be compensated by increasing the
optical path along the star direction ∆s = ∆r · ŝ by 70 cm, equating to an angle of 0.1 °at
a 600 m baseline. This angle should be small enough to correct with an actuator on the
telescope mirror.

An orbital simulation showed that the ∆v required to ensure the optical path
differenceD was kept at zero during integration was at most 5% of the overall ∆v budget
of 0.04 m/s. We also found that correcting for differential atmospheric drag only required
a miniscule 0.3% of the budget. Then, we allowed the spacecraft array to thrust twice to
correct for the residual J2 perturbations over the second half of the orbit, which resulted
in a ∆v at most around 3%. Finally, we alternated correcting during integration and
correcting the rest of the orbit to see whether the total ∆v required would remain stable
over multiple orbits. It was found that the ∆v requirement did increase over multiple
orbits, but only by less than 0.5% per orbit, and that this may have been due to numerical
errors in the simulation. Changing the target of the interferometry was found to not
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require a lot of ∆v: a change of 2° in star position at 45° inclination requires about
∆v = 10 mm/s; less than the budget of a single orbit. Ultimately, our configuration only
required ∼10% of the available ∆v budget per year; an encouraging result that shows
that three thrusters should be enough to perform interferometry with a large amount of
headroom.

The final part of the project was to investigate what targets are accessible for the
satellite array for a given orbit. While the precession caused by the inclination of the
orbit was shown to change at which times a target was viewable for a whole orbit, the
most important parameter was found to be the antisolar angle: the maximum angle a
star can make with the point directly opposite the sun. This parameter essentially sets
the maximum ecliptic latitude for potential targets, and severely affects what proportion
of a year a given target is observable. Nevertheless, even with a conservative antisolar
angle of 40° we find that a large number of interesting targets are viewable, including
the Taurus Molecular Cloud and the microquasar SS 433.

The interferometric UV plane was also simulated, and the array was found to cover a
significant proportion of baseline lengths and position angles simply due to being in Low
Earth Orbit. The coverage was shown to be tied to the antisolar angle as well, further
increasing the need to push this parameter to be as large as possible.

Ultimately, this project has proven to have provided useful insight into the
development of the ASP mission, specifically in regards to the feasibility of this ambitious
design. The next stage will be to look at the detailed astrophysical science requirements,
which will lead to the beam combiner requirements and the design of the baseline. We
also need to conduct a full scale control simulation of the array, so that the exact amount
of ∆v required per orbit can be calculated, as well as revealing the optical path length
residuals that we can expect during operation. Currently, this thesis only computed ∆v

for the largest perturbations, and it is likely that more thrust will be required from the
control system as well as for smaller perturbations.

The control system philosophy also needs to be designed, based on both the light
from an astrophysical source and the metrology subsystem; an issue which has not
been discussed at length in this thesis. The metrology subsystem is the other critical
component of the mission as it will define the accuracy with which we know the positions
of each of the satellites in the array, which in turn determines the precision to which
we can correct the optical paths. Together, the orbital dynamics, science requirements,
control design and metrology subsystem can then be combined into a full systems
model to perform an in-depth simulation of the array. Finally, constructing some of the
components to be used on the spacecraft and performing physical tests on them will
provide concrete evidence as to whether this mission can prove once and for all that
space interferometry is a feasible technological concept.

If this mission is successful, we hope that this will kickstart the field of space
inteferometry again. This would result in a revolution of high resolution astronomy,
allowing for amazing science not just in the field of exoplanets, but also for other
astronomy fields including compact objects and star formation. There are some truly
exciting times ahead, and I hope that I will play a part in getting these techniques off the
ground and into space.
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Appendix

A.1 Quaternions

Quaternions are an extension of the complex number system and are useful for
performing rotations. A quaternion is a number of the form

q = a+ bi+ cj + dk, (A.1)

where i, j, k are the “fundamental quaternion units”. Here, a is denoted the real part and
[b, c, d] is denoted the vector part of q.

A quaternion can represent a rotation through so called “axis-angle” representation.
Given an angle θ and an axis û = [ux, uy, uz], the respective quaternion is

q(û, θ) = cos
θ

2
+ sin

θ

2
(uxi+ uyj + uzk), (A.2)

where the default rotation is in the counter-clockwise direction. Note that the quaternion
must be normalised for a rotation. The norm of a quaternion, using the generic
quaternion in equation A.1, is |q| =

√
a2 + b2 + c2 + d2. The normalised quaternion is

then simply q̂ = q
|q| .

The multiplication of two quaternions (as above) is given by the Hamilton
product. Consider two quaternions q1, q2 with real parts a1, a2 and vector parts u1 =

[b1, c1, d1],u2 = [b2, c2, d2] respectively. The result of the Hamilton product (q3 with real
part a3 and vector part u3 = [b3, c3, d3]) is given by

a3 = a1a2 − u1 · u2

u3 = a1u2 + a2u1 + u1 × u2. (A.3)

Two rotations, represented as two quaternions, can be combined into one quaternion
using the Hamilton product. Consider a rotation comprised of first undergoing q1 and
then q2. The combined rotation is simply

q = q2q1. (A.4)

To apply a rotation (represented by q) to an arbitrary vector, u, the vector must first
be represented as a quaternion with real part equal to zero as follows:

p = uxi+ uyj + uzk. (A.5)
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The rotated vector is then the vector component of the following function:

Q(u, q) = qpq−1, (A.6)

where q−1 is the inverse quaternion, which for a unit quaternion is defined by

q−1 = a− bi− cj − dk. (A.7)

The inverse quaternion is equivalent to performing a rotation in the other direction
(clockwise).
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A.2 The geopotential model

The non-sphericity of the Earth contributes significantly to orbital perturbations, in
particular the J2 zonal term. A short derivation of this perturbing force follows.

The gravitational field is a conservative vector field, with field potential U . Outside
the Earth, Laplace’s equation holds:

∇2U = 0. (A.8)

In spherical coordinates, given by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ, (A.9)

Laplace’s equation transforms into

1

r2

∂

∂r

(
r2∂U

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+

1

r2 sin2 φ

∂2U

∂φ2
= 0. (A.10)

The solutions to this equation are of the form of spherical harmonics (Garland, 1979):

U =
1

r1+n
Pmn (cos θ)[Amn cosmφ+Bm

n sinmφ], (A.11)

where Pmn (cos θ) are the associated Legendre polynomials, given for m ≤ n by

Pmn (cos θ) =
(1− cos2 θ)m/2

2nn!

dn+m(cos2 θ − 1)n

d(cos θ)n+m
. (A.12)

Spherical harmonics form an orthonormal basis, and hence the full solution is a sum over
all m and n (known as the order and degree of the polynomials) (Blakely, 1995):

U =

∞∑
n=0

n∑
m=0

[
1

r1+n
Pmn (cos θ)[Amn cosmφ+Bm

n sinmφ]

]

=
1

r

∞∑
n=0

[
A0
n

1

rn
P 0
n(cos θ) +

n∑
m=0

1

rn
Pmn (cos θ)[Amn cosmφ+Bm

n sinmφ]

]
. (A.13)

Now, we know that the monopole term (n = 0) must give the spherically symmetric
potential, and so

A0
0 = −µ. (A.14)

Furthermore, the dipole terms (n = 1) can vanish by choosing the origin at the centre of
the Earth (National Research Council, 1997), and so the potential becomes

U =
1

r

[
−µ+

∞∑
n=2

A0
n

1

rn
P 0
n(cos θ) +

∞∑
n=2

n∑
m=0

1

rn
Pmn (cos θ)[Amn cosmφ+Bm

n sinmφ]

]
.

(A.15)

Finally, we will transform into dimensionless coefficients by multiplying by −1/µRnE ,
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Figure A.1: Spherical harmonics of different orders (m) and degrees (n). Figure taken
from Zotter (2008)

Table A.1: Low order geopotential coefficients. Note that Jn = C0
n. Table taken from

Montenbruck & Gill (2000)

Cmn m = 0 1 2 3
n = 0 +1.00
1 0.00 0.00
2 −1.08× 10−3 0.00 +1.57× 10−6

3 +2.53× 10−6 +2.18× 10−6 +3.11× 10−7 +1.02× 10−7

Smn m = 0 1 2 3
n = 0 0.00
1 0.00 0.00
2 0.00 0.00 −9.03× 10−7

3 0.00 +2.68× 10−7 −2.12× 10−7 +1.98× 10−7

where RE is the equatorial radius of the Earth:

Jn = − A0
n

µRnE
Cmn = − Amn

µRnE
Smn = − Bm

n

µRnE
, (A.16)

and so

U = −µ
r

[
1 +

∞∑
n=2

Jn

(
RE
r

)n
P 0
n(cos θ) +

∞∑
n=2

n∑
m=0

(
RE
r

)n
Pmn (cos θ)[Cmn cosmφ+ Smn sinmφ]

]
.

(A.17)

The terms with coefficients Jn are known as ”zonal“ terms, as that part of the potential
does not depend on the longitude. If n = m, then the Cmn and Smn terms do not change
sign with latitude - this means that the sphere is divided into ”sectors“ bounded by
meridians of longitude (Montenbruck & Gill, 2000). Hence these terms are known as
sectoral harmonics. All other terms divide the sphere into regions known as ”tesserae“
and so are known as tesseral harmonics. The larger the value of n and m, the smaller
the size of these regions. A variety of harmonics are shown in Fig. A.1 to illustrate the
difference between these terms.
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A table of the low order and degree geopotential coefficients is shown in Table A.1.
Here, we can see that the J2 zonal term is the most important by several orders of
magnitude, and represents the Earth’s oblateness term. Truncating the series at this point
yields

U = −µ
r

[
1 + J2

(
RE
r

)2

P 0
2 (cos θ)

]

= −µ
r

[
1 + J2

R2
E

2r2
(3 cos2 θ − 1)

]
. (A.18)

The J2 potential term is hence

UJ2 = −J2
µR2

E

2r3
(3 cos2 θ − 1). (A.19)

Converting into cartesian coordinates:

UJ2 = −J2
µR2

E

2r3

(
3
z2

r2
− 1

)
= −J2

µR2
E

2

(
3
z2

r5
− 1

r3

)
= −J2

µR2
E

2

(
3z2

(x2 + y2 + z2)
5
2

− 1

(x2 + y2 + z2)
3
2

)
. (A.20)

The force is the negative gradient of the potential, and so

FJ2, x = −∂UJ2
∂x

= J2
µR2

E

2

(
−5

2

3z2

(x2 + y2 + z2)
7
2

· 2x+
3

2

1

(x2 + y2 + z2)
5
2

· 2x

)

= J2
µR2

E

2

(
−15xz2

r7
+

3x

r5

)
= J2

3µR2
Ex

2r5

(
1− 5

z2

r2

)
(A.21)

FJ2, y = −∂UJ2
∂y

= J2
3µR2

Ey

2r5

(
1− 5

z2

r2

)
(A.22)

FJ2, z = −∂UJ2
∂z

= J2
µR2

E

2

(
−5

2

3z2

(x2 + y2 + z2)
7
2

· 2z +
6z

(x2 + y2 + z2)
5
2

+
3

2

1

(x2 + y2 + z2)
5
2

· 2z

)

= J2
µR2

E

2

(
−15z3

r7
+

9z

r5

)
= J2

3µR2
Ez

2r5

(
3− 5

z2

r2

)
. (A.23)

Hence, the force vector due to J2 is equal to

F J2 = J2
3µR2

E

2r5

[(
1− 5

z2

r2

)
(xx̂ + yŷ) +

(
3− 5

z2

r2

)
zẑ

]
. (A.24)
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A.3 Derivation of the J2 LVLH equations of motion

We will derive the equations of motion for a satellite influenced by the J2 oblateness
perturbation with respect to a circular reference orbit in the local vertical, local horizontal
(LVLH) frame. For the first half of the derivation, see Schweighart & Sedwick (2002).

In the absence of perturbations, the reference orbit is rotating with an angular velocity
given by

ω = ωη̂

ω =

√
µ

R3
orb
. (A.25)

Through averaging the angular velocity over the J2 perturbation, we have that the
velocity must be adjusted by a factor c, given by

c =
√

1 + s

s =
3J2R

2
E

8R2
orb

(1 + 3 cos 2i)

ω = ωcη̂. (A.26)

The main long term effect of J2 is nodal precession, where the longitude of the
ascending node Ω drifts over time. Hence we must correct this through adjusting the
reference orbit. The position of the reference orbit at a time t in the Earth-centred inertial
(ECI) frame is given by

rref = Rorb([cos Ω(t) cos θ(t)− sin Ω(t) sin θ(t) cos i(t)]x̂

+[sin Ω(t) cos θ(t)− cos Ω(t) sin θ(t) cos i(t)]ŷ

+[sin θ(t) sin i(t)]ẑ), (A.27)

where

i(t) = iref −
σ

k
sin iref σ =

(
3ωJ2R

2
E

2R2
orb

)
cos iref

Ω(t) = Ω0 − σt k = ωc+ σ cos iref

θ(t) = kt. (A.28)

The velocity of the reference orbit is found by taking the derivative:

ṙref = Rorb([− sin Ω(t) cos θ(t)Ω̇(t)− cos Ω(t) sin θ(t)θ̇(t)−
cos Ω(t) sin θ(t) cos i(t)Ω̇(t)− sin Ω(t) cos θ(t) cos i(t)θ̇(t)]x̂

+[ cos Ω(t) cos θ(t)Ω̇(t)− sin Ω(t) sin θ(t)θ̇(t)−
sin Ω(t) sin θ(t) cos i(t)Ω̇(t) + cos Ω(t) cos θ(t) cos i(t)θ̇(t)]ŷ

+[cos θ(t) sin i(t)θ̇(t)]ẑ), (A.29)
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where

Ω̇(t) = −σ
θ̇(t) = k. (A.30)

The base equations of motion for a satellite in the LVLH frame is the
Hill-Clohessy-Wiltshire (HCW) equations (Equation 3.1). Adding the J2 potential and
counteracting the adjustments to the reference orbit given above produces a set of
differential equations,

ρ̈ = 2ωcξ̇ + (5c2 − 2)ω2ρ− 3ω2J2
R2
E

Rorb

[
1

2
− 3 sin2 iref sin2 kt

2
− 1 + 3 cos 2iref

8

]
ξ̈ = −2ωcρ̇− 3ω2J2

R2
E

Rorb
sin2 iref sin kt cos kt

η̈ = −(3c2 − 2)ω2η. (A.31)

Finally, Schweighart & Sedwick (2002) corrected the cross-track motion of the
satellites (η direction). The parameters for this correction as defined by Schweighart &
Sedwick (2002) are as follows:

isat =
η̇0

kRorb
+ iref

∆Ω0 =
η0

Rorb sin iref

γ0 = cot−1

[
cot iref sin isat − cos isat cos ∆Ω0

sin ∆Ω0

]
Φ0 = arccos(cos isat cos iref + sin isat sin iref cos ∆Ω0)

∆Ω̇sat = −
3ωJ2R

2
E

2R2
orb

cos isat

∆Ω̇ref = −
3ωJ2R

2
E

2R2
orb

cos iref

q = ωc− (cos γ0 sin γ0 cot ∆Ω0 − sin2 γ0 cos isat)( ˙∆Ωsat −∆Ω̇ref)

−∆Ω̇sat cos isat

l = −Rorb
sin isat sin iref sin ∆Ω0

sin Φ0
(∆Ω̇sat −∆Ω̇ref). (A.32)

Using the above, the two equations below must be solved simultaneously to find m and
φ:

m sin(φ) = η0

l sin(φ) + qm cos(φ) = η̇0. (A.33)

The cross-track motion is then described by the differential equation

η̈ = −q2η + 2lq cos(qt+ φ). (A.34)
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Putting it all together gives us the final set of three coupled differential equations,

ρ̈ = 2ωcξ̇ + (5c2 − 2)ω2ρ− 3ω2J2
R2
E

Rorb

[
1

2
− 3 sin2 iref sin2 kt

2
− 1 + 3 cos 2iref

8

]
ξ̈ = −2ωcρ̇− 3ω2J2

R2
E

Rorb
sin2 iref sin kt cos kt

η̈ = −q2η + 2lq cos(qt+ φ), (A.35)

which can be simplified a bit through trigonometric identities:

ρ̈ = 2ωcξ̇ + (5c2 − 2)ω2ρ− 3ω2J2
R2
E

Rorb

3 cos 2kt sin2 iref

4

ξ̈ = −2ωcρ̇− 3ω2J2
R2
E

Rorb
sin2 iref sin kt cos kt

η̈ = −q2η + 2lq cos(qt+ φ). (A.36)

The given solutions by Schweighart & Sedwick (2002) assume certain initial
conditions for t = 0. To generalise the equations, a set of solutions for arbitrary initial
conditions at t = t0 were created, requiring the following coefficients.

α = ω
√

1− s

β =
2c√
1− s

γ = β2 − 1 [−]

δ =
α

k
=
ω
√

1− s
k

ζ =
3ω2J2R

2
E

4δ(α2 − 4k2)Rorb
sin2(iref) (A.37)

κ1 = β2ρ0 +
β

α
ξ̇0 − βζ(δ2 − 4) cos(2kt0)

κ2 = ξ0 −
β

α
ρ̇0 +

1

2
ζ(δ2 − 4)(γδ − 3β) sin(2kt0)

κ3 = −γρ0 −
β

α
ξ̇0 − ζ(4β − 3δ) cos(2kt0)

κ4 =
1

α
ρ̇0 + 2ζ(βδ − 3) sin(2kt0)

κ5 = ζ(βδ2 − 3δ)

κ6 =
ζδ

2
(3βδ − γδ2 − 4)

κ7 = η0

κ8 =
η̇0 − l sin(qt0 + φ)

q
. (A.38)
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The final equations for position are then

ρ(t) = κ1 + κ3 cos(α(t− t0)) + κ4 sin(α(t− t0))) + κ5 cos(2kt)

ξ(t) = κ2 −
αγ

β
κ1(t− t0) + βκ4 cos(α(t− t0))− βκ3 sin(α(t− t0)) + κ6 sin(2kt)

η(t) = κ7 cos(q(t− t0)) + l(t− t0) sin(qt+ φ) + κ8 sin(q(t− t0)). (A.39)

We can substitute κ3 and κ4 for a trigonometric function to simplify the motion
further, as was done in section 2.2. Setting

κ3 = A1 cosϕ1 κ4 = A1 sinϕ1

κ7 = A2 cosϕ2 κ8 = A2 sinϕ2, (A.40)

we then have

ρ(t) = κ1 +A1 cosϕ1 cos(α(t− t0)) +A1 sinϕ1 sin(α(t− t0))) + κ5 cos(2kt)

ξ(t) = κ2 −
αγ

β
κ1(t− t0) + βA1 sinϕ1 cos(α(t− t0))− βA1 cosϕ1 sin(α(t− t0)) + κ6 sin(2kt)

η(t) = A2 cosϕ2 cos(q(t− t0)) + l(t− t0) sin(qt+ φ) +A2 sinϕ2 sin(q(t− t0)), (A.41)

which becomes

ρ(t) = κ1 +A1 cos(α(t− t0)− ϕ1) + κ5 cos(2kt)

ξ(t) = κ2 −
αγ

β
κ1(t− t0)− βA1 sin(α(t− t0)− ϕ1) + κ6 sin(2kt)

η(t) = A2 cos(q(t− t0)− ϕ2) + l(t− t0) sin(qt+ φ). (A.42)

To check if these equations are the same as the solutions given in Schweighart &
Sedwick (2002), we can substitute in their given initial velocity conditions for t0 = 0:

ξ̇0 = −2ρ0ωc+
3J2R

2
Eω

2

4kRorb
sin2 (iref)

= −αβρ0 +
ζδ(α2 − 4k2)

k

= −αβρ0 + ζα(δ2 − 4) (A.43)

ρ̇0 = ξ0ω

(
1− s

2c

)
=
α

β
ξ0. (A.44)

Through substitution, we see that the equation coefficients become

κ1 = 0

κ2 = 0

κ3 = ρ0 − κ5

κ4 =
ξ0

β
.

Here, note that κ5 and κ6 are equivalent to the Schweighart coefficients αSCH and βSCH
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respectively. Substituting the cross track motion initial conditions, the equations then
become:

ρ(t) = (ρ0 − αSCH) cos
(
ωt
√

1− s
)

+

√
1− s
2c

ξ0 sin
(
ωt
√

1− s
)

+ αSCH cos(2kt)

ξ(t) = ξ0 cos
(
ωt
√

1− s
)
− 2c√

1− s
(ρ0 − αSCH) sin

(
ωt
√

1− s
)

+ βSCH sin(2kt)

η(t) = (lt+m) sin(qt+ φ), (A.45)

which is the same as the equations given in Schweighart & Sedwick (2002).
We can also check if they reduce to the solutions of the HCW equations (Equation 3.1)

under the substitution that J2 = 0. Here, the coefficients end up as

s = 0 κ1 = 4ρ0 +
2ξ̇0

ω

c = 1 κ2 = ξ0 −
2ρ̇0

ω

k = ω κ3 = −3ρ0 −
2ξ̇0

ω

α = ω κ4 =
ρ̇0

ω

β = 2 κ5 = 0

γ = 3 κ6 = 0

δ = 1 κ7 = η0

ζ = 0 κ8 =
η̇0

ω

q = ω

l = 0.

Substituting these in and setting t0 = 0 for simplicity, we obtain

ρ(t) = 4ρ0 +
2ξ̇0

ω
− (3ρ0 +

2ξ̇0

ω
) cos(ωt) +

ρ̇0

ω
sin(ωt)

ξ(t) = ξ0 −
2ρ̇0

ω
− 6ωρ0t− 3ξ̇0t+

2ρ̇0

ω
cos(ωt) + (6ρ0 +

4ξ̇0

ω
) sin(ωt)

η(t) = η0 cos(ωt) +
η̇0

ω
sin(ωt), (A.46)

which are the general solutions of the HCW equations with initial conditions at t0 = 0.
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